get方法:
/** * 检索指定位置元素,索引越界,抛出异常 */ public E get(int index) { checkElementIndex(index); return node(index).item; } /** * 返回指定位置的非空节点 */ Node<E> node(int index) { // assert isElementIndex(index); //如果索引位置靠链表前半部分,从头开始遍历 if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { //否则,从尾开始遍历 Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } }getFirst操作和getLast操作:
/** * Returns the first element in this list. * * @return the first element in this list * @throws NoSuchElementException if this list is empty */ public E getFirst() { final Node<E> f = first; if (f == null) //链表为null,抛出异常 throw new NoSuchElementException(); return f.item; } /** * 链表为空时,会抛出NoSuchElementException */ public E getLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return l.item; } 删除操作总结删除操作由很多种方法,有:
按照指定对象删除:boolean remove(Object o),一次只会删除一个匹配的对象
按照指定位置删除
删除任意位置的对象:E remove(int index),当index越界时会抛出异常
删除头节点位置的对象
在链表为空时抛出异常:E remove()、E removeFirst()、E pop()
在链表为空时返回null:E poll()、E pollFirst()
删除尾节点位置的对象
在链表为空时抛出异常:E removeLast()
在链表为空时返回null:E pollLast()
remove()方法:移除第一个节点,将第一个节点置空,让下一个节点变成第一个节点,链表长度减1,修改次数加1,返回移除的第一个节点。
/** * 在链表为空时将抛出NoSuchElementException */ public E remove() { return removeFirst(); }removeFirst()方法:
/** * Removes and returns the first element from this list. * * @return the first element from this list * @throws NoSuchElementException if this list is empty */ public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } /** * Unlinks non-null first node f. */ private E unlinkFirst(Node<E> f) { // assert f == first && f != null; final E element = f.item; final Node<E> next = f.next; //第一个节点置空 f.item = null; f.next = null; // help GC //下一个节点变成第一个节点 first = next; if (next == null) last = null; else next.prev = null; //链表长度减1 size--; //修改次数加1 modCount++; return element; } remove(int index)方法:删除任意位置的元素,如果删除成功将返回true,否则返回false
检查index范围,属于[0,size)
将索引出节点删除
/** * 删除任意位置的元素,如果删除成功将返回true,否则返回false * 1. 检查index范围,属于[0,size) * 2. 将索引出节点删除 */ public E remove(int index) { //检查index范围 checkElementIndex(index); //将节点删除 return unlink(node(index)); } set方法: public E set(int index, E element) { //检查index是否越界 checkElementIndex(index); //索引index位置的节点 Node<E> x = node(index); //index位置的节点内容替换为element E oldVal = x.item; x.item = element; //返回原来旧的值 return oldVal; } clear方法: public void clear() { //遍历链表,置空链表元素 for (Node<E> x = first; x != null; ) { Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; //修改链表长度为0 size = 0; //修改次数加一 modCount++; } listIterator方法: /** * 在ListIterator的构造器中,得到了当前位置的节点,就是变量next。next()方法返回当前节点的值并将 *next指向其后继节点,previous()方法返回当前节点的前一个节点的值并将next节点指向其前驱节点。由于 *Node是一个双端节点,所以这儿用了一个节点就可以实现从前向后迭代和从后向前迭代。另外在 *ListIterator初始时,exceptedModCount保存了当前的modCount,如果在迭代期间,有操作改变了链表 *的底层结构,那么再操作迭代器的方法时将会抛出ConcurrentModificationException。 */ public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); }LinkedList 源码解析:
节点对象:
/** *节点对象 */ private static class Node<E> { // 当前存储元素 E item; // 下一个元素节点 Node<E> next; // 上一个元素节点 Node<E> prev; Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } package java.util; import java.util.function.Consumer; public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable { //list的元素数量 transient int size = 0; /** *第一个节点 */ transient Node<E> first; /** * 最后一个节点 */ transient Node<E> last; /** * 空构造函数 */ public LinkedList() { } /** *构造一个包含指定 collection 中的元素的列表,这些元素按其 collection 的迭代器返回的顺序排列 */ public LinkedList(Collection<? extends E> c) { this(); addAll(c); } /** * Links e as first element. */ private void linkFirst(E e) { final Node<E> f = first; //新建节点,以头节点为后继节点 final Node<E> newNode = new Node<>(null, e, f); first = newNode; //如果链表为空,last节点也指向该节点 if (f == null) last = newNode; else //否则,将头节点的前驱指针指向新节点 f.prev = newNode; size++; modCount++; } /** * Links e as last element. */ void linkLast(E e) { //指向链表尾部 final Node<E> l = last; //以尾部为前驱节点创建一个新节点 final Node<E> newNode = new Node<>(l, e, null); //将链表尾部指向新节点 last = newNode; //如果链表为空,那么该节点既是头节点也是尾节点 if (l == null) first = newNode; else l.next = newNode; //增加集合大小 size++; modCount++; } /** * 非空节点前插入元素 * 1. 创建newNode节点,将newNode的后继指针指向succ,前驱指针指向pred * 2. 将succ的前驱指针指向newNode * 3. 根据pred是否为null,进行不同操作。 * - 如果pred为null,说明该节点插入在头节点之前,要重置first头节点 * - 如果pred不为null,那么直接将pred的后继指针指向newNode即可 */ void linkBefore(E e, Node<E> succ) { // assert succ != null; final Node<E> pred = succ.prev; final Node<E> newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++; } /** * Unlinks non-null first node f. */ private E unlinkFirst(Node<E> f) { // assert f == first && f != null; final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) last = null; else next.prev = null; size--; modCount++; return element; } /** * Unlinks non-null last node l. */ private E unlinkLast(Node<E> l) { // assert l == last && l != null; final E element = l.item; final Node<E> prev = l.prev; l.item = null; l.prev = null; // help GC last = prev; if (prev == null) first = null; else prev.next = null; size--; modCount++; return element; } /** * 从链表中移除元素 * 1 得到待删除节点的前驱节点和后继节点 * 2 删除前驱节点 * 3 删除后继节点 */ E unlink(Node<E> x) { // assert x != null; final E element = x.item; //后继节点 final Node<E> next = x.next; //前驱节点 final Node<E> prev = x.prev; //删除前驱指针 if (prev == null) { //如果删除的节点是头节点,令头节点指向该节点的后继节点 first = next; } else { //将前驱节点的后继节点指向后继节点 prev.next = next; x.prev = null; } //删除后继指针 if (next == null) { //如果删除的节点是尾节点,令尾节点指向该节点的前驱节点 last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; } /** * Returns the first element in this list. * * @return the first element in this list * @throws NoSuchElementException if this list is empty */ public E getFirst() { final Node<E> f = first; if (f == null) //链表为null,抛出异常 throw new NoSuchElementException(); return f.item; } /** * 链表为空时,会抛出NoSuchElementException */ public E getLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return l.item; } /** * Removes and returns the first element from this list. * * @return the first element from this list * @throws NoSuchElementException if this list is empty */ public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } /** * Removes and returns the last element from this list. * * @return the last element from this list * @throws NoSuchElementException if this list is empty */ public E removeLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return unlinkLast(l); } /** *list头部添加指定元素 */ public void addFirst(E e) { linkFirst(e); } /** * 将元素添加到链表尾部,与add()方法一样。所以实现也一样 */ public void addLast(E e) { linkLast(e); } /** * 检查对象o是否存在于链表中 */ public boolean contains(Object o) { //返回结果不是-1,那就说明该对象存在于链表中 return indexOf(o) != -1; } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return size; } /** * 将一个元素添加至list尾部 */ public boolean add(E e) { linkLast(e); return true; } /** * 删除指定元素 */ public boolean remove(Object o) { //如果删除对象为null if (o == null) { //从前向后遍历 for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { //从前向后遍历 for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); //匹配返回true return true; } } } return false; } /** * 将集合插入到链表尾部,即开始索引位置为size */ public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } /** * 将集合从指定位置开始插入 * 1. 检查index索引范围 * 2. 得到集合数据 * 3. 得到插入位置的前驱和后继节点 *4. 遍历数据,将数据插入到指定位置 */ public boolean addAll(int index, Collection<? extends E> c) { //检查index范围 checkPositionIndex(index); //得到集合的数据 Object[] a = c.toArray(); int numNew = a.length; if (numNew == 0) return false; //得到插入位置的前驱节点和后继节点 Node<E> pred, succ; //位置为尾部,前驱节点为last,后继节点为null if (index == size) { succ = null; pred = last; } else { //调用node()方法得到后继节点,再得到前驱节点 succ = node(index); pred = succ.prev; } //遍历数据将数据插入 for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; //创建新节点 Node<E> newNode = new Node<>(pred, e, null); //前置节点为空,插入位置在链表头部 if (pred == null) first = newNode; else pred.next = newNode; pred = newNode; } //如果插入位置在尾部,重置last节点 if (succ == null) { last = pred; } else { //否则,将插入的链表与先前链表连接起来 pred.next = succ; succ.prev = pred; } size += numNew; modCount++; return true; } public void clear() { //遍历链表,置空链表元素 for (Node<E> x = first; x != null; ) { Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; //修改链表长度为0 size = 0; //修改次数加一 modCount++; } /** * 检索指定位置元素,索引越界,抛出异常 */ public E get(int index) { checkElementIndex(index); return node(index).item; } public E set(int index, E element) { //检查index是否越界 checkElementIndex(index); //索引index位置的节点 Node<E> x = node(index); //index位置的节点内容替换为element E oldVal = x.item; x.item = element; //返回原来旧的值 return oldVal; } /** * 指定位置添加元素 *1. 检查index的范围,否则抛出异常 *2. 如果插入位置是链表尾部,那么调用linkLast方法 *3. 如果插入位置是链表中间,那么调用linkBefore方法 */ public void add(int index, E element) { //检查索引是否处于[0-size]之间 checkPositionIndex(index); //添加在链表尾部 if (index == size) linkLast(element); else //添加在链表中间 linkBefore(element, node(index)); } /** * 删除任意位置的元素,如果删除成功将返回true,否则返回false * 1. 检查index范围,属于[0,size) * 2. 将索引出节点删除 */ public E remove(int index) { //检查index范围 checkElementIndex(index); //将节点删除 return unlink(node(index)); } /** * Tells if the argument is the index of an existing element. */ private boolean isElementIndex(int index) { return index >= 0 && index < size; } /** * Tells if the argument is the index of a valid position for an * iterator or an add operation. */ private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * 返回指定位置的非空节点 */ Node<E> node(int index) { // assert isElementIndex(index); //如果索引位置靠链表前半部分,从头开始遍历 if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { //否则,从尾开始遍历 Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } // Search Operations /** *返回第一个匹配的索引 */ public int indexOf(Object o) { int index = 0; if (o == null) { //从头往后遍历,元素为空的时候的检索,此处可以观察到LinkedList是支持空元素的 for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { //从头往后遍历,元素不为空的时候的检索 for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } /** *返回最后一个匹配的索引 */ public int lastIndexOf(Object o) { int index = size; if (o == null) { //从后向前遍历,元素为空,返回 for (Node<E> x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { //从后向前遍历,元素不为空,匹配的情况下返回 for (Node<E> x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } // Queue operations. /** * Retrieves, but does not remove, the head (first element) of this list. * * @return the head of this list, or {@code null} if this list is empty * @since 1.5 */ public E peek() { final Node<E> f = first; //不会抛出异常,但是会返回null return (f == null) ? null : f.item; } /** * Retrieves, but does not remove, the head (first element) of this list. * * @return the head of this list * @throws NoSuchElementException if this list is empty * @since 1.5 */ public E element() { return getFirst(); } /** * 在链表为空时将返回null */ public E poll() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } /** * 在链表为空时将抛出NoSuchElementException */ public E remove() { return removeFirst(); } /** * 将数据添加到链表尾部,其内部调用了add(E e)方法 */ public boolean offer(E e) { return add(e); } /** *将数据插入链表头部 */ public boolean offerFirst(E e) { addFirst(e); return true; } /** * 数据添加到链表尾部 */ public boolean offerLast(E e) { addLast(e); return true; } /** * Retrieves, but does not remove, the first element of this list, * or returns {@code null} if this list is empty. * * @return the first element of this list, or {@code null} * if this list is empty * @since 1.6 */ public E peekFirst() { final Node<E> f = first; return (f == null) ? null : f.item; } /** * 为空,返回null,不会抛异常 */ public E peekLast() { final Node<E> l = last; return (l == null) ? null : l.item; } /** * Retrieves and removes the first element of this list, * or returns {@code null} if this list is empty. * * @return the first element of this list, or {@code null} if * this list is empty * @since 1.6 */ public E pollFirst() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } /** * 链表为空时会返回null,而不是抛出异常 */ public E pollLast() { final Node<E> l = last; return (l == null) ? null : unlinkLast(l); } /** * Pushes an element onto the stack represented by this list. In other * words, inserts the element at the front of this list. * * <p>This method is equivalent to {@link #addFirst}. * * @param e the element to push * @since 1.6 */ public void push(E e) { addFirst(e); } /** * 在链表为空时将抛出NoSuchElementException */ public E pop() { return removeFirst(); } /** * Removes the first occurrence of the specified element in this * list (when traversing the list from head to tail). If the list * does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ public boolean removeFirstOccurrence(Object o) { return remove(o); } /** * 链表为空时将抛出NoSuchElementException */ public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * 在ListIterator的构造器中,得到了当前位置的节点,就是变量next。next()方法返回当前节点的值并将 *next指向其后继节点,previous()方法返回当前节点的前一个节点的值并将next节点指向其前驱节点。由于 *Node是一个双端节点,所以这儿用了一个节点就可以实现从前向后迭代和从后向前迭代。另外在 *ListIterator初始时,exceptedModCount保存了当前的modCount,如果在迭代期间,有操作改变了链表 *的底层结构,那么再操作迭代器的方法时将会抛出ConcurrentModificationException。 */ public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } private class ListItr implements ListIterator<E> { private Node<E> lastReturned; private Node<E> next; private int nextIndex; //保存当前modCount,确保fail-fast机制 private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); //得到当前索引指向的next节点 next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } /** *获取下一个节点 */ public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } /** *获取前一个节点,将next节点向前移 */ public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** *节点对象 */ private static class Node<E> { // 当前存储元素 E item; // 下一个元素节点 Node<E> next; // 上一个元素节点 Node<E> prev; Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } /** * @since 1.6 */ public Iterator<E> descendingIterator() { return new DescendingIterator(); } /** * Adapter to provide descending iterators via ListItr.previous */ private class DescendingIterator implements Iterator<E> { private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList<E> superClone() { try { return (LinkedList<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Returns a shallow copy of this {@code LinkedList}. (The elements * themselves are not cloned.) * * @return a shallow copy of this {@code LinkedList} instance */ public Object clone() { LinkedList<E> clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node<E> x = first; x != null; x = x.next) clone.add(x.item); return clone; } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * * <p>The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list * in proper sequence */ public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; return result; } /** * Returns an array containing all of the elements in this list in * proper sequence (from first to last element); the runtime type of * the returned array is that of the specified array. If the list fits * in the specified array, it is returned therein. Otherwise, a new * array is allocated with the runtime type of the specified array and * the size of this list. * * <p>If the list fits in the specified array with room to spare (i.e., * the array has more elements than the list), the element in the array * immediately following the end of the list is set to {@code null}. * (This is useful in determining the length of the list <i>only</i> if * the caller knows that the list does not contain any null elements.) * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose {@code x} is a list known to contain only strings. * The following code can be used to dump the list into a newly * allocated array of {@code String}: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); int i = 0; Object[] result = a; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; /** * Saves the state of this {@code LinkedList} instance to a stream * (that is, serializes it). * * @serialData The size of the list (the number of elements it * contains) is emitted (int), followed by all of its * elements (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node<E> x = first; x != null; x = x.next) s.writeObject(x.item); } /** * Reconstitutes this {@code LinkedList} instance from a stream * (that is, deserializes it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } /** * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> * and <em>fail-fast</em> {@link Spliterator} over the elements in this * list. * * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and * {@link Spliterator#ORDERED}. Overriding implementations should document * the reporting of additional characteristic values. * * @implNote * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED} * and implements {@code trySplit} to permit limited parallelism.. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator<E> spliterator() { return new LLSpliterator<E>(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator<E> implements Spliterator<E> { static final int BATCH_UNIT = 1 << 10; // batch array size increment static final int MAX_BATCH = 1 << 25; // max batch array size; final LinkedList<E> list; // null OK unless traversed Node<E> current; // current node; null until initialized int est; // size estimate; -1 until first needed int expectedModCount; // initialized when est set int batch; // batch size for splits LLSpliterator(LinkedList<E> list, int est, int expectedModCount) { this.list = list; this.est = est; this.expectedModCount = expectedModCount; } final int getEst() { int s; // force initialization final LinkedList<E> lst; if ((s = est) < 0) { if ((lst = list) == null) s = est = 0; else { expectedModCount = lst.modCount; current = lst.first; s = est = lst.size; } } return s; } public long estimateSize() { return (long) getEst(); } public Spliterator<E> trySplit() { Node<E> p; int s = getEst(); if (s > 1 && (p = current) != null) { int n = batch + BATCH_UNIT; if (n > s) n = s; if (n > MAX_BATCH) n = MAX_BATCH; Object[] a = new Object[n]; int j = 0; do { a[j++] = p.item; } while ((p = p.next) != null && j < n); current = p; batch = j; est = s - j; return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); } return null; } public void forEachRemaining(Consumer<? super E> action) { Node<E> p; int n; if (action == null) throw new NullPointerException(); if ((n = getEst()) > 0 && (p = current) != null) { current = null; est = 0; do { E e = p.item; p = p.next; action.accept(e); } while (p != null && --n > 0); } if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); } public boolean tryAdvance(Consumer<? super E> action) { Node<E> p; if (action == null) throw new NullPointerException(); if (getEst() > 0 && (p = current) != null) { --est; E e = p.item; current = p.next; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }