(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法) (2)

从上面的数据中我们可以将报告日期和第一列自行车品牌和地区(ModelRegion)形成组合主键满足上面的第二点要求,因为同一个时间一个品牌在一个地区只能产生一个销售值。

我们来详细分析上面的时间看看能不能满足第一个条件,我们选择透视表,这个和Excel里面的透视表是一样的,用起来基本没啥问题,我们将明细数据拖入到区域中间,将列选择报告日期、行选择自行车品牌区域(ModelRegion),我们来看看数据:

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

我们可以看到,这张往年销售记录表中包含了从2005年到2008年的销售记录,其中06年和07年都是全年每一个月份都会含有一个记录,而2005年、08年只有半年的数据,其实这里08年只有半年数据是正常的,因为微软案例数据库AdventureWorksDW2008R2产生的日期就是在这里,也就是说我们会预测这之后的销售记录,05年只有半年表示数据时从这里开始的,这个没啥问题...我们继续向下拖动

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

我去...这下面的几种产品在05年、06年就没有任何销售记录,这有两种可能,第一种是这两个产品从06年才开始引进销售的,所以之前的数据没有是正常的,当然还有一种极端的情况那就是这两年这个产品销售量就为0...对于这种情况我们要跟业务方确认做处理,对于我们分析人员而言...销售记录不存在空值,也就是说这地方没有销售显示值应为0,而非空!

我们点击年份进入月份,详细的看一下值。

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

看来这些数据开始日期真是从05年7月份开始,然后到08年6月结束,而且这之间每个月份的数据都是连续的,也就是说从开始到结束连续的每个月都有值,我们向下面拖

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

的确,下面的这几种商品是从07年7月份开始产生销售,结束日期都是到08年6月份结束。

经过上面的分析,其实这种表中的数据是满足我们Microsoft时序算法的数据要求的,其中存在连续的时间轴维度,只是有几种产品销售开始日期不是全部从开始日期开始的,对于这种情况时序算法是允许的,只要保证在我们时间轴维度中每一个序列都有统一的结束日期,并且区间时间为连续的既可以。

当然可以通过其它方式分析源数据,咱这里就不进行了。

(3)新建挖掘结构

在挖掘结构上右键,现在新建数据挖掘结构,然后下一步...继续然后下一步...这里不做赘述,不明白可以参考前几篇文章,我们选择Microsfoft时序算法,看图

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

点击下一步,有几个关键点我们需要设置一下,我们来看图:

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

这里我们将品牌和区域、报告日期联合形成键列,将销售量和销售业绩两列即作为输入又作为输出,因为这两列即使我们历史分析要用的输入值,也是我们以后将要推测的输出列,当然也可以通过建议进行分析,这里我们很明白要做的事情,我们点击下一步,

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

我们留下30%的事实,做后面的准确性验证测试,然后取个名字:Forecasting,然后选择下一步

(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 时序算法)

(4)参数配置

对于Microsoft时序算法有几个参数比较重要,需要单独配置,这里我们介绍一下

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgfsdg.html