3个著名加密算法(MD5、RSA、DES)的解析 (4)

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则: 

C1 = P^e1 mod n 

C2 = P^e2 mod n 

密码分析者知道n、e1、e2、C1和C2,就能得到P。 

因为e1和e2互质,故用Euclidean算法能找到r和s,满足: 

r * e1 + s * e2 = 1 

假设r为负数,需再用Euclidean算法计算C1^(-1),则 

( C1^(-1) )^(-r) * C2^s = P mod n 

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。 

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有 
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。 

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

3.加密算法之DES算法

一、DES算法 

  美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。加密算法要达到的目的(通常称为DES 密码算法要求)主要为以下四点: ☆提供高质量的数据保护,防止数据未经授权的泄露和未被察觉的修改; 

☆具有相当高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握; 

☆DES密码体制的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础; 

☆实现经济,运行有效,并且适用于多种完全不同的应用。 

1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES?Data Encryption Standard)。 

  目前在国内,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。 
  DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。 
  DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密, 生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。 
  通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。 
  DES算法详述 
  DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法的主流程图如下: 
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表: 
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4, 
  62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8, 
  57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3, 
  61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7, 
  即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。 
  经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示: 
  40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31, 
  38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29, 
  36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27, 
  34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25, 
放大换位表 
  32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11, 
  12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21, 
  22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1, 
单纯换位表 
  16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10, 
  2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25, 
  在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2......的功能表: 
选择函数Si 
S1: 
  14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7, 
  0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8, 
  4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0, 
  15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13, 
S2: 
  15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10, 
  3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5, 
  0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15, 
  13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9, 
S3: 
  10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8, 
  13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1, 
  13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7, 
  1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12, 
S4: 
  7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15, 
  13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9, 
  10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4, 
  3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14, 
S5: 
  2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9, 
  14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6, 
  4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14, 
  11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3, 
S6: 
  12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11, 
  10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8, 
  9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6, 
  4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13, 
S7: 
  4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1, 
  13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6, 
  1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2, 
  6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12, 
S8: 
  13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7, 
  1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2, 
  7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8, 
  2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11, 
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。 
  现设输入为: D=D1D2D3D4D5D6 
令:列=D2D3D4D5 
  行=D1D6 
  然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法 
  从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行: 
循环左移位数 
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1 
  以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。 

二、DES算法理论图解 

DES的算法是对称的,既可用于加密又可用于解密。下图是它的算法粗框图。其具体运算过程有如下七步。 
<缺:找到补上> 

三、DES算法的应用误区  

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zgwjpd.html