r语言常见对概率等计算的相关函数 (2)

其中df为degrees of freedom。ncp是non-centrality parameter (non-negative).ncp=0时是central卡方分布,ncp不为0时,表示这个卡方分布是由非标准正态分布组合而成,ncp=这些正态分布的均值的平方和。

11.β分布Beta Distribution,beta

变量x仅能出现于0到1之间。

空气中含有的气体状态的水分。表示这种水分的一种办法就是相对湿度。即现在的含水量与空气的最大含水量(饱和含水量)的比值。我们听到的天气预告用语中就经常使用相对湿度这个名词。

相对湿度的值显然仅能出现于0到1之间(经常用百分比表示)。冬季塔里木盆地的日最大相对湿度和夏季日最小相对湿度。证实它们都符合贝塔分布

dbeta(x, shape1, shape2, ncp = 0, log = FALSE)

pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)

qbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)

rbeta(n, shape1, shape2, ncp = 0)

shape1,shape2是beta分布的两个参数。E(x)=s1/(s1+s2),var(x)=s1*s2/(s1+s2)^2 * (s1+s2+1)

12.t分布Student t Distribution,t

应用在当对呈正态分布的母群体的均值进行估计。当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t 分布。

学生t 分布可简称为t 分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

dt(x, df, ncp, log = FALSE)

pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)

qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE)

rt(n, df, ncp)

其中df是自由度,ncp是non-centrality parameter delta,If omitted, use the central t distribution。ncp出现时表示分布由非标准的卡方分布构成。

13.F分布

一个F-分布的随机变量是两个卡方分布变量的比率。F-分布被广泛应用于似然比率检验,特别是方差分析中

df(x, df1, df2, ncp, log = FALSE)

pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)

qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)

rf(n, df1, df2, ncp)

df1,df2是两个自由度,ncp同t分布中的ncp。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zwpsjj.html