表2. 将每种类型的网络与基准的最佳单次准确度进行比较。
我们的卷积方法达到了92%,比HBPL本身以外的任何模型都强。 这仅略低于人为错误率。 虽然HBPL总体上显示出更好的结果,但我们表现最好的卷积网络并未包含有关字符或笔触的任何其他先验知识,例如有关绘图过程的生成信息。 这是我们模型的主要优势。
表3,MNIST 10 对1 单分类任务的结果
4.4 MNIST单分类训练Omniglot数据集包含少量样本,用于每种可能的字母类别。因此,原始作者将其称为“ MNIST转置”,其类数远远超过训练实例的数量(Lake等,2013)。我们认为监视在Omniglot上训练的模型可以很好地推广到MNIST会很有意思,在MNIST中,我们将MNIST中的10位数字视为字母,然后评估10向单发分类任务。我们遵循与Omniglot类似的程序,在MNIST测试集上进行了400次单次试验,但不包括对训练集的任何微调。所有28x28图像均被上采样至35x35,然后提供给我们的模型的简化版本,该模型在Omniglot的35x35图像上进行了训练,这些图像被下采样了3倍。我们还评估了此任务的最近邻基线。
表3显示了该实验的结果。最近的邻居基准提供与Omniglot相似的性能,而卷积网络的性能下降幅度更大。但是,我们仍然可以从Ominglot上学到的功能中获得合理的概括,而无需对MNIST进行任何培训。
5,总结我们提出了一种通过首先学习深度卷积孪生神经网络进行验证来执行单发分类的策略。我们概述了将网络性能与为Omniglot数据集开发的现有最新分类器进行比较的新结果。我们的网络大大超越了所有可用的基准,并且接近先前作者所获得的最佳数字。我们认为,这些网络在此任务上的强大性能不仅表明我们的度量学习方法可以实现人类水平的准确性,而且该方法应扩展到其他领域的单次学习任务,尤其是图像分类。
在本文中,我们仅考虑通过使用全局仿射变换处理图像对及其失真来训练验证任务。我们一直在尝试一种扩展算法,该算法利用有关单个笔划轨迹的数据来产生最终的计算失真(图8)。希望通过在笔划上施加局部仿射变换并将其覆盖到合成图像中,我们希望我们可以学习更好地适应新示例中常见变化的特征。
图8.针对Omniglot中不同字符的两组笔画变形。 列描绘了从不同抽屉中抽取的字符。 第1行:原始图片。 第2行:全局仿射变换。 第3行:笔画仿射变换。 第4行:在笔划变换之上分层的全局仿射变换。 请注意,笔画变形如何会增加噪音并影响各个笔画之间的空间关系。