以上这五个步骤,都由逻辑层(Logic Tier)负责。前三步容易解决,都是简单的数据库操作。最后两步,需要用到一个辅助工具,队列。队列的意义在于,分离了任务的产生与任务的执行。
队列的实现方式有多种,例如Apache Mina[9]就可以用来做队列。但是Twitter团队自己动手实现了一个队列,Kestrel [10,11]。Mina与Kestrel,各自有什么优缺点,似乎还没人做过详细比较。
不管是Kestrel还是Mina,看起来都很复杂。或许有人问,为什么不用简单的数据结构来实现队列,例如动态链表,甚至静态数组?如果逻辑层只 在一台服务器上运行,那么对动态链表和静态数组这样的简单的数据结构,稍加改造,的确可以当作队列使用。Kestrel和Mina这些“重量级”的队列, 意义在于支持联络多台机器的,分布式的队列。在本系列以后的篇幅中,将会重点介绍。
最后说说前段,表述层。
表述层的主要职能有两 个,1. HTTP协议处理器(HTTP Processor),包括拆解接收到的用户请求,以及封装需要发出的结果。2. 分发器(Dispatcher),把接收到的用户请求,分发给逻辑层的机器处理。如果逻辑层只有一台机器,那么分发器无意义。但是如果逻辑层由多台机器组 成,什么样的请求,发给逻辑层里面哪一台机器,就大有讲究了。逻辑层里众多机器,可能各自专门负责特定的功能,而在同功能的机器之间,要分摊工作,使负载 均衡。
访问Twitter网站的,不仅仅是浏览器,而且还有手机,还有像QQ那样的电脑桌面工具,另外还有各式各样的网站插件,以便把其它网站联系到 Twitter.com上来[12]。因此,Twitter的访问者与Twitter网站之间的通讯协议,不一定是HTTP,也存在其它协议。
三段论的Twitter架构,主要是针对HTTP协议的终端。但是对于其它协议的终端,Twitter的架构没有明显地划分成三段,而是把表述层和 逻辑层合二为一,在Twitter的文献中,这二合一经常被称为“API”。
综上所述,一个能够完成Twitter基本功能的,简单的架构如Figure 1 所示。或许大家会觉得疑惑,这么出名的网站,架构就这么简单?Yes and No,2006年5月Twitter刚上线的时候,Twitter架构与Figure 1差距不大,不一样的地方在于加了一些简单的缓存(Cache)。即便到了现在,Twitter的架构依然可以清晰地看到Figure 1 的轮廓。
Figure 1. The essential 3-tier of Twitter architecture
Courtesy
Reference,
[7] Tweets中常用的工具 ()
[8] 构建基于PHP的微博客服务 ()
[9] Apache Mina Homepage ()
[10] Kestrel Readme ()
[11] A Working Guide to Kestrel. ()
[12] Alphabetical List of Twitter Services and Applications ()
【3】Cache == Cash
Cache == Cash,缓存等于现金收入。虽然这话有点夸张,但是正确使用缓存,对于大型网站的建设,是至关重要的大事。网站在回应用户请求时的反应速度,是影响用户 体验的一大因素。而影响速度的原因有很多,其中一个重要的原因在于硬盘的读写(Disk IO)。
Table 1 比较了内存(RAM),硬盘(Disk),以及新型的闪存(Flash),在读写方面的速度比较。硬盘的读写,速度比内存的慢了百万倍。所以,要提高网站 的速度,一个重要措施是尽可能把数据缓存在内存里。当然,在硬盘里也必须保留一个拷贝,以此防范万一由于断电,内存里的数据丢失的情况发生。
Table 1. Storage media comparison of Disk, Flash and RAM [13]
Courtesy
Twitter 工程师认为,一个用户体验良好的网站,当一个用户请求到达以后,应该在平均500ms以内完成回应。而Twitter的理想,是达到200ms- 300ms的反应速度[17]。因此在网站架构上,Twitter大规模地,多层次多方式地使用缓存。Twitter在缓存使用方面的实践,以及从这些实 践中总结出来的经验教训,是Twitter网站架构的一大看点。
Figure 2. Twitter architecture with Cache
Courtesy
哪里需要缓存?越是Disk IO频繁的地方,越需要缓存。