IC基础(一):异步FIFO原理与代码实现 (2)

  而对于“满”的判断,如下图,由于gray码除了MSB外,具有镜像对称的特点,当读指针指向7,写指针指向8时,除了MSB,其余位皆相同,不能说它为满。因此不能单纯的只检测最高位了,在gray码上判断为满必须同时满足以下3条:

wptr和同步过来的rptr的MSB不相等,因为wptr必须比rptr多折回一次。

wptr与rptr的次高位不相等,如上图位置7和位置15,转化为二进制对应的是0111和1111,MSB不同说明多折回一次,111相同代表同一位置。

剩下的其余位完全相等。

IC基础(一):异步FIFO原理与代码实现

4.5 总体实现

系统的总体框图如下:

IC基础(一):异步FIFO原理与代码实现

四、同步化分析

由于是异步FIFO的设计,读写时钟不一样,在产生读空信号和写满信号时,会涉及到跨时钟域的问题,如何解决?
  跨时钟域的问题:由于读指针是属于读时钟域的,写指针是属于写时钟域的,而异步FIFO的读写时钟域不同,是异步的,要是将读时钟域的读指针与写时钟域的写指针不做任何处理直接比较肯定是错误的,因此我们需要进行同步处理以后仔进行比较
  解决方法:加两级寄存器同步 + 格雷码(目的都是消除亚稳态)
 
1.使用异步信号进行使用的时候,好的设计都会对异步信号进行同步处理,同步一般采用多级D触发器级联处理。这种模型大部分资料都说的是第一级寄存器产生亚稳态后,第二级寄存器稳定输出概率为90%,第三极寄存器稳定输出的概率为99%,如果亚稳态跟随电路一直传递下去,那就会令自我修护能力较弱的系统直接崩溃。

2.将一个二进制的计数值从一个时钟域同步到另一个时钟域的时候很容易出现问题,因为采用二进制计数器时所有位都可能同时变化,在同一个时钟沿同步多个信号的变化会产生亚稳态问题。而使用格雷码只有一位变化,因此在两个时钟域间同步多个位不会产生问题。所以需要一个二进制到gray码的转换电路,将地址值转换为相应的gray码,然后将该gray码同步到另一个时钟域进行对比,作为空满状态的检测。

那么,多位二进制码如何转化为格雷码?

假设原始的值从0开始,格雷码产生的规律是:

第一步,改变最右边的位元值;

第二步,改变右起第一个为1的位元的左边位元;

第三步,第四步重复第一步和第二步,直到所有的格雷码产生完毕(换句话说,已经走了(2^n) - 1 步)。

用一个例子来说明:
假设产生3位元的格雷码,原始值位 000
第一步:改变最右边的位元值: 001
第二步:改变右起第一个为1的位元的左边位元: 011
第三步:改变最右边的位元值: 010
第四步:改变右起第一个为1的位元的左边位元: 110
第五步:改变最右边的位元值: 111
第六步:改变右起第一个为1的位元的左边位元: 101
第七步:改变最右边的位元值: 100

采用格雷码每次就只有一个位变化。格雷码和自然二进制码如下。图片来自百度百科。

在这里插入图片描述

换一种描述方法:

二进制的数据右移一位与二进制数据进行取反

assign gray_code = (bin_code>>1) ^ bin_code;

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zypfps.html