引入attention机制:采用注意机制使用权重向量来衡量句子不同部分重要性的不同。attention的计算主要思想沿用了AICNN和ABCNN中的几种attention,分别是feature的attention,interaction后新的表示和句子原表示之间的attention。
四、总结与展望 4.1 数据层面建立更加合理的知识库:每个知识点只包含一个意图,且知识点之间没有交叉,歧义,冗余等容易造成混淆的因素
标注:为每个FAQ积累一定数量的有代表性的相似问
后期的持续维护:包括新FAQ发现,原FAQ的合并、拆分、纠正等
4.2 模型层面进一步捕捉syntactic level和semantic level的知识如语义角色标注(SRL, semantic role labelling)和词性标注(POS, part of speech tagging)等,引入到文本的表示之中,提高文本语义匹配的效果
目前大部分检索行问答的工作做的是问题和问题匹配,或是问题和答案匹配。后续可以同时引入问题和答案的信息进行建模,如图:
参考文献[1] Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// ACM International Conference on Conference on Information & Knowledge Management. ACM, 2013:2333-2338.
[2] Shen Y, He X, Gao J, et al. A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval[C]// Acm International Conference on Conference on Information & Knowledge Management. ACM, 2014:101-110.
[3] Hu B, Lu Z, Li H, et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences[J]. Advances in Neural Information Processing Systems, 2015, 3:2042-2050.
[4] Qiu X, Huang X. Convolutional neural tensor network architecture for community-based question answering[C]// International Conference on Artificial Intelligence. AAAI Press, 2015:1305-1311.
[5] Palangi H, Deng L, Shen Y, et al. Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2016, 24(4):694-707.
[6] Yin W, Schütze H. MultiGranCNN: An Architecture for General Matching of Text Chunks on Multiple Levels of Granularity[C]// Meeting of the Association for Computational Linguistics and the, International Joint Conference on Natural Language Processing. 2015:63-73.
[7] Wan S, Lan Y, Guo J, et al. A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations[J]. 2015:2835-2841.
[8] Hu B, Lu Z, Li H, et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences[J]. Advances in Neural Information Processing Systems, 2015, 3:2042-2050.
[9] Pang L, Lan Y, Guo J, et al. Text Matching as Image Recognition[J]. 2016.
[10] Wan S, Lan Y, Xu J, et al. Match-SRNN: Modeling the Recursive Matching Structure with Spatial RNN[J]. Computers & Graphics, 2016, 28(5):731-745.
[11] Lu Z, Li H. A deep architecture for matching short texts[C]// International Conference on Neural Information Processing Systems. Curran Associates Inc. 2013:1367-1375.
[12] Yin W, Schütze H, Xiang B, et al. ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs[J]. Computer Science, 2015.
[13] Tan M, Santos C D, Xiang B, et al. LSTM-based Deep Learning Models for Non-factoid Answer Selection[J]. Computer Science, 2015.
[14] Tan M, Santos C D, Xiang B, et al. Improved Representation Learning for Question Answer Matching[C]// Meeting of the Association for Computational Linguistics. 2016:464-473.
[15] Santos C D, Tan M, Xiang B, et al. Attentive Pooling Networks[J]. 2016.
[16] X Zhang , S Li , L Sha , H Wang. Attentive Interactive Neural Networks for Answer Selection in Community Question Answering[C]// International Conference on Artificial Intelligence.
[17] L Sha , X Zhang , F Qian , B Chang , Z Sui. A Multi-View Fusion Neural Network for Answer Selection[C]// International Conference on Artificial Intelligence.
[18] Wang Z, Hamza W, Florian R. Bilateral Multi-Perspective Matching for Natural Language Sentences[C]// Twenty-Sixth International Joint Conference on Artificial Intelligence. 2017:4144-4150.
[19] Kim Y. Convolutional Neural Networks for Sentence Classification[J]. Eprint Arxiv, 2014.
[20] Wang S, Jiang J. A Compare-Aggregate Model for Matching Text Sequences[J]. 2016.
[21] Severyn A, Moschitti A. Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks[C]// The International ACM SIGIR Conference. ACM, 2015:373-382.