常用限流算法与Guava RateLimiter源码解析 (3)

先判断是否能在指定超时时间内获取到令牌,通过 nextFreeTicketMicros <= timeoutMicros + nowMicros 是否为true来判断,即可取令牌时间早于当前时间加超时时间则可取(预消费的特性),否则不可获取。

如果不可获取,立即返回false。

如果可获取,则调用 reserveAndGetWaitLength(permits, nowMicros) 来更新下次可取令牌时间点与当前存储的令牌数,返回等待时间(逻辑与前面相同),并阻塞等待相应的时间,返回true。

源码如下所示

public boolean tryAcquire(int permits, long timeout, TimeUnit unit) { long timeoutMicros = max(unit.toMicros(timeout), 0); checkPermits(permits); long microsToWait; synchronized (mutex()) { long nowMicros = stopwatch.readMicros(); if (!canAcquire(nowMicros, timeoutMicros)) { //判断是否能在超时时间内获取指定数量的令牌 return false; } else { microsToWait = reserveAndGetWaitLength(permits, nowMicros); } } stopwatch.sleepMicrosUninterruptibly(microsToWait); return true; } private boolean canAcquire(long nowMicros, long timeoutMicros) { return queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros; //只要可取时间小于当前时间+超时时间,则可获取(可预消费的特性!) } @Override final long queryEarliestAvailable(long nowMicros) { return nextFreeTicketMicros; }

以上就是 SmoothBursty 实现的基本处理流程。注意两点:

RateLimiter 通过限制后面请求的等待时间,来支持一定程度的突发请求——预消费的特性。

RateLimiter 令牌桶的实现并不是起一个线程不断往桶里放令牌,而是以一种延迟计算的方式(参考resync函数),在每次获取令牌之前计算该段时间内可以产生多少令牌,将产生的令牌加入令牌桶中并更新数据来实现,比起一个线程来不断往桶里放令牌高效得多。(想想如果需要针对每个用户限制某个接口的访问,则针对每个用户都得创建一个RateLimiter,并起一个线程来控制令牌存放的话,如果在线用户数有几十上百万,起线程来控制是一件多么恐怖的事情)

总结

本文介绍了限流的三种基本算法,其中令牌桶算法与漏桶算法主要用来限制请求处理的速度,可将其归为限速,计数器算法则是用来限制一个时间窗口内请求处理的数量,可将其归为限量(对速度不限制)。Guava 的 RateLimiter 是令牌桶算法的一种实现,但 RateLimiter 只适用于单机应用,在分布式环境下就不适用了。虽然已有一些开源项目可用于分布式环境下的限流管理,如阿里的Sentinel,但对于小型项目来说,引入Sentinel可能显得有点过重,但限流的需求在小型项目中也是存在的,下一篇文章就介绍下基于 RateLimiter 的分布式下的限流实现。

[转载请注明出处]
作者:雨歌
欢迎关注作者公众号:半路雨歌,查看更多技术干货文章

qrcode

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzjpdf.html