一次压测实战的复盘 (2)

一次压测实战的复盘

一次压测实战的复盘

common和select线程数分别为10,20时,通过观察线程状态,select线程出现等待getTask,cpu会到达94%,tps相应的也会增加,并发数的增加也只是提高了tps,但是会导致响应时间的下降;另外并发增大时,select线程都在执行任务,common线程出现在latch上面等待,但是响应时间慢了,cpu忙了,因为所有的select线程都在运行,线程上下文切换(CS)次数肯定会大量增加(可以vmstat查看),

一次压测实战的复盘

一次压测实战的复盘

初步总结

总结: 综合这4组压测数据,初步有个简单的结论,common线程池决定了整体的吞吐量(TPS),但是吞吐量提升的的同时,CPU和响应时间也会增大,而select线程需要依赖common线程的个数,比例在1.5-2之间,少了会导致TPS上不去响应时间也会增加,大了CPU上去了,最终也会导致响应时间的增加,所以common和select线程数的选择需要有据可询。那么针对当前的机器配置,兼顾TPS,响应时间和CPU使用率(低于90%),common线核心程池数设置8,select线程数设为12,此时100的并发数,CPU最高在90%,TPS在760,平均响应时间100ms。

优化方向:

通过线程状态和业务流程的分析,我们发现可以将并发部分的业务流程进行细分,主要划分为IO等待型任务和CPU计算型任务,然后使用不同的线程池,IO型的就多设置线程数,CPU型的就少一点。有个初始经验值

IO 型:2 * CPU个数

CPU型:CPU个数 + 1

另外,分析过程中为了方便线程池配置的变更和观察使用公共包ThreadPoolManager来管理系统所有的线程池。有需要的可以使用

压测时机器的其他指标,供参考

Pidstat

一次压测实战的复盘

Vmstat

一次压测实战的复盘

Mpstat

一次压测实战的复盘

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzsjpy.html