7 种 JVM 垃圾收集器,看完我跪了。。 (4)

G1在使用时,Java堆的内存布局与其他收集器有很大区别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,而都是一部分Region(不需要连续)的集合。

建立可预测的时间模型

G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。

避免全堆扫描——Remembered Set

G1把Java堆分为多个Region,就是“化整为零”。但是Region不可能是孤立的,一个对象分配在某个Region中,可以与整个Java堆任意的对象发生引用关系。在做可达性分析确定对象是否存活的时候,需要扫描整个Java堆才能保证准确性,这显然是对GC效率的极大伤害。

为了避免全堆扫描的发生,虚拟机为G1中每个Region维护了一个与之对应的Remembered Set。虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作。

检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

初始标记(Initial Marking) 仅仅只是标记一下GC Roots 能直接关联到的对象,并且修改TAMS(Nest Top Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可以的Region中创建对象,此阶段需要停顿线程,但耗时很短。

并发标记(Concurrent Marking) 从GC Root 开始对堆中对象进行可达性分析,找到存活对象,此阶段耗时较长,但可与用户程序并发执行。

最终标记(Final Marking) 为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程的Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。

筛选回收(Live Data Counting and Evacuation) 首先对各个Region中的回收价值和成本进行排序,根据用户所期望的GC 停顿是时间来制定回收计划。此阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅度提高收集效率。

通过下图可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段(Safepoint处):

7 种 JVM 垃圾收集器,看完我跪了。。

总结

7 种 JVM 垃圾收集器,看完我跪了。。

推荐去我的博客阅读更多:

1.Java JVM、集合、多线程、新特性系列教程

2.Spring MVC、Spring Boot、Spring Cloud 系列教程

3.Maven、Git、Eclipse、Intellij IDEA 系列工具教程

4.Java、后端、架构、阿里巴巴等大厂最新面试题

觉得不错,别忘了点赞+转发哦!

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zzxxxj.html