由此可以看出,输出电压与输入电压成线性关系,通过两个线性度非常近似的光电二极管,其中一个构成反馈的形式,来弥补光电二极管线性度差的缺点。以上的推导都是假定所有的电路都是工作在线性范围内的,通过合理的选型可以是设计的隔离电路具有非常好的线性度。
HCNR200/201可以用于隔离模拟信号,具有良好的稳定性、线性度、频带宽和低成本等特性。HCNR200/201具有非常灵活的特性,可设计相应的应用电路,能够在许多不同的模式下进行操作,包括:单极/双极、ac / dc和反向/正向。HCNR200/201很好的解决了许多模拟隔离问题。
HCNR200/201产品特点有非线性度高,数值为0.01%;HCNR200传递增益(IPD2 / IPD1•K3)为±15%,HCNR201的传递增益为±5%;增益温度系数为-65ppm /℃ ;带宽> 1兆赫;封装形式分为8引脚DIP和贴片两种,允许灵活的电路设计。
2. 基于电磁耦合技术的隔离放大器AD202/AD204 是一种变压器耦合、微型封装的精密隔离放大器。它通过片内变压器耦合,对信号的输入和输出进行电气隔离。片内的直流电压变换电路能为输入级、外部传感器和信号处理电路提供±7.5V/2mA 的隔离电源,从而优化了外围电路的设计,提高了芯片的性价比。
AD20和AD204 的内部结构基本相同, 仅是某些电气参数和供电方式略有不同。AD202 是由+ 15V直流电源直接供电,AD204 是由外部时钟源供电。AD202/AD204 具有精度高、功耗低、共模性能好、体积小和价格低等特点。因此该芯片被广泛应用于多通道数据采集系统、电流短路测量、电机控制、信号的处理与隔离及低漂移输入放大器等方面。
AD202/AD204的功能框图如 所示。从图中看出,该芯片由放大器、调制器、解调器、整流和滤波、电源变换器等组成。工作时,+15V电源连到电源输入引脚31,使片内(AD202) 振荡器工作,从而产生频率为25kHz的载波信号,通过变压器耦合,经整流和滤波,在隔离输出部分形成电流2mA的±7.5V隔离电压。该电压除供给片内电源外,还可作为外围电路(如传感器、浮地信号调节、前置放大器)的电源。AD204电源是从33引脚用输入时钟提供。在输入电路中,片内独立放大器能够作为AD202/AD204 输入信号的缓冲或放大。放大后的信号经调制器调制后能把该信号变换成载波信号,经变压器送入同步解调器,以致在输出端重现输入信号。由于解调信号要经三阶滤波器滤波,从而使得输出信号中的噪声和纹波达到最小,为后级应用电路提供良好的激励源。
AD202/AD204可以很灵活的应用于各种模拟信号的隔离场合,图 给出了一种将4~20mA电流信号变换为隔离的0~10V输出电压的典型应用电路。4~ 20mA 输入电流通过250Ω的电阻加到AD202或AD204片内输入放大器的同相端后,在隔离放大器的输出端便能得到与电流成比例的电压1~5V。为了实现电平移位,必须在隔离放大器输出低端LO加-1V参考电压,以使比例输出电压为0~5V,该电压经外接同相比例放大器(741)放大后,才能获得0~10V输出电压,从而达到变换和隔离的目的。
ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。
1.1.5 嵌入式系统的电气隔离设计许多硬件设计任务主要围绕如下方面展开:数/模转换器(DAC)、模/数转换器(ADC)、输入和输出信号调理、输入/输出模块的电气连线、控制器之间以及模块之间的隔离问题。各种传感器产生的数字信号都传送到一个中央控制器,进行处理和分析。为了保证用户接口端电压的安全性,同时防止瞬态尖峰的传输,需要实现电流隔离。对于传感器信号隔离,传统的模拟隔离方案(如隔离放大器AD202)成本太高,可以采用数字隔离方案——AMP→ADC→DigitalIsolate→MCU降低成本,如图5所示。