Archive 表分区后可以得到巨大的性能提高。当然也依赖于你的用途,没有分区时任何查询都是全表扫描。如果你有不需要变更的历史数据,还要进行按时间的分析统计,使用Archive引擘是极佳的选择。它会使用10-20%的原空间,对于聚集查询有比MyISAM /InnoDB表更好的性能。
虽然一个很好的优化的分区MyISAM 表性能可能好于对应的Archive表, 但是需要10倍的空间。
实验二:
1.建两个表,一个按时间字段分区,一个不分区。
CREATE TABLE part_tab
(
c1 int default NULL,
c2 varchar(30) default NULL,
c3 date default NULL
) engine=myisam
PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,
PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,
PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,
PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,
PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),
PARTITION p11 VALUES LESS THAN MAXVALUE );
create table no_part_tab
(c1 int(11) default NULL,
c2 varchar(30) default NULL,
c3 date default NULL) engine=myisam;
2.建一个存储过程, 利用该过程向两个表插入各8百万条不同数据。
delimiter //
CREATE PROCEDURE load_part_tab()
begin
declare v int default 0;
while v < 8000000
do
insert into part_tab
values (v,'testing partitions',adddate(‘1995-01-01′,(rand(v)*36520) mod 3652));
set v = v + 1;
end while;
end
//
然后执行
mysql> delimiter ;
mysql> call load_part_tab();
Query OK, 1 row affected (8 min 17.75 sec)
mysql> insert into no_part_tab select * from part_tab;
Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
3.开始对这两表中的数据进行简单的范围查询吧。并显示执行过程解析:
mysql> select count(*) from no_part_tab where c3 > date ‘1995-01-01′ and c3 < date ‘1995-12-31′;
+———-+
| count(*) |
+———-+
| 795181 |
+———-+
1 row in set (38.30 sec)
mysql> select count(*) from part_tab where c3 > date ‘1995-01-01′ and c3 < date ‘1995-12-31′;
+———-+
| count(*) |
+———-+
| 795181 |
+———-+
1 row in set (3.88 sec)
mysql> explain select count(*) from no_part_tab where c3 > date ‘1995-01-01′ and c3 < date ‘1995-12-31′\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: no_part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8000000
Extra: Using where
1 row in set (0.00 sec)
mysql> explain partitions select count(*) from part_tab where
-> c3 > date ‘1995-01-01′ and c3 < date ‘1995-12-31′\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_tab
partitions: p1
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 798458
Extra: Using where
1 row in set (0.00 sec)
从上面结果可以看出,使用表分区比非分区的减少90%的响应时间。命令解析Explain程序可以看出在对已分区的表的查询过程中仅对第一个分区进行了扫描,其余跳过。进一步测试:
– 增加日期范围
mysql> select count(*) from no_part_tab where c3 > date ‘-01-01′and c3 < date ‘1997-12-31′;
+———-+
| count(*) |
+———-+
| 2396524 |
+———-+
1 row in set (5.42 sec)
mysql> select count(*) from part_tab where c3 > date ‘-01-01′and c3 < date ‘1997-12-31′;
+———-+
| count(*) |
+———-+
| 2396524 |
+———-+
1 row in set (2.63 sec)
– 增加未索引字段查询
mysql> select count(*) from part_tab where c3 > date ‘-01-01′and c3 < date
‘1996-12-31′ and c2='hello';
+———-+
| count(*) |
+———-+
| 0 |
+———-+
1 row in set (0.75 sec)
mysql> select count(*) from no_part_tab where c3 > date ‘-01-01′and c3 < da
te ‘1996-12-31′ and c2='hello';
+———-+
| count(*) |
+———-+
| 0 |
+———-+
1 row in set (11.52 sec)