1959年, 美国 IBM 公司的 A. M. Samuel设计了一个具有学习能力的跳棋程序,曾经战胜了美国一个保持 8 年不败的冠军。这个程序向人们初步展示了机器学习的能力。
1962年, Hubel 和 Wiesel 发现猫脑皮层中独特的神经网络结构可以有效降低学习的复杂性,从而提出著名的 Hubel-Wiesel 生物视觉模型,以后提出的神经网络模型均受此启迪。
1969 年,人工智能研究的先驱者 Marvin Minsky和 Seymour Papert 出版了对机器学习研究具有深远影响的著作《Perceptron》, 此后的十几年基于神经网络的人工智能研究进入低潮。
1980 年, 在美国卡内基·梅隆大学举行了第一届机器学习国际研讨会, 标志着机器学习研究在世界范围内兴起。
1986 年,Rumelhart、Hinton 和 Williams 联合在《自然》杂志发表了著名的反向传播算法(BP) , 首次阐述了 BP 算法在浅层前向型神经网络模型的应用,从此,神经网络的研究与应用开始复苏。
1989 年, 美国贝尔实验室学者 Yann LeCun 教授提出了目前最为流行的卷积神经网络( CNN) 计算模型,推导出基于 BP 算法的高效训练方法, 并成功地应用于英文手写体识别。CNN 是第一个被成功训练的人工神经网络,也是后来深度学习最成功、应用最广泛的模型之一。
90 年代后, 多种浅层机器学习模型相继问世,诸如逻辑回归、支持向量机等.基于统计规律的浅层学习方法比起传统的基于规则的方法具备很多优越性, 取得了不少成功的商业应用的同时, 浅层学习的问题逐渐暴露出来,由于有限的样本和计算单元导致对数据间复杂函数的表示能力有限,学习能力不强,只能提取初级特征。
2006 年, 在学界及业界巨大需求刺激下, 特别是计算机硬件技术的迅速发展提供了强大的计算能力。机器学习领域的泰斗 Geoffrey Hinton 和 Ruslan Salakhutdinov 发表文章 ,提出了深度学习模型, 主要论点包括:多个隐层的人工神经网络具有良好的特征学习能力;通过逐层初始化来克服训练的难度,实现网络整体调优。这个模型的提出, 开启了深度神经网络机器学习的新时代。
2012 年, Hinton 研究团队采用深度学习模型赢得计算机视觉领域最具影响力的 ImageNet 比赛冠军,从而标志着深度学习进入第二个阶段。
至今, 在云计算、大数据、计算机硬件技术发展的支撑下,深度学习近年来在多个领域取得了令人赞叹的进展,推出一批成功的商业应用,诸如谷歌翻译,苹果语音工具 Siri, 微软的 Cortana 个人语音助手,蚂蚁金服的扫脸技术,特别是谷歌 AlphaGo 人机大战获胜的奇迹等, 使机器学习成为计算机科学的一个新的领域。
自然语言处理和机器学习的联系
语言是人类区别其他动物的本质特性。在所有生物中,只有人类才具有语言能力。人类的多种智能都与语言有着密切的关系。人类的逻辑思维以语言为形式,人类的绝大部分知识也是以语言文字的形式记载和流传下来的。因而,它也是人工智能(机器学习和深度学习为代表的人工智能)的一个重要,甚至核心部分。
用自然语言与计算机进行通信,这是人们长期以来所追求的。因为它既有明显的实际意义和理论意义。实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等。前者称为自然语言理解,后者称为自然语言生成。因此,自然语言处理大体包括了自然语言理解和自然语言生成两个部分。无论实现自然语言理解,还是自然语言生成,都远不如人们原来想象的那么简单,而是十分困难的。从现有的理论和技术现状看,通用的、高质量的自然语言处理系统,仍然是较长期的努力目标,但是针对一定应用,具有相当自然语言处理能力的实用系统已经出现,有些已商品化,甚至开始产业化。典型的例子有:多语种数据库和专家系统的自然语言接口、各种机器翻译系统、全文信息检索系统、自动文摘系统等。