随着 Node 的发展,JavaScript 的应用场景早已不再局限在浏览器中。本文不讨论网页应用、命令行工具等短时间执行,且只影响终端用户的场景。由于运行时间短,随着进程的退出,内存会释放,几乎没有内存管理的必要。但随着 Node 在服务端的广泛应用,JavaScript 的内存管理需要引起我们的重视。
V8 的内存限制在一般的后端开发语言中,在基本的内存使用上没有什么限制,然而在 Node 中通过 JavaScript 使用内存时就会发现只能使用部分内存(64位系统下约为1.4GB,32位系统下约为0.7GB)。在这样的限制下,将会导致 Node 无法直接操作大内存对象。
造成这个问题的主要原因在于 Node 的 JavaScript 执行引擎 V8。
在 V8 中,所有的 JavaScript 对象都是通过堆来进行分配的。Node 提供了 V8 中内存的使用量查看方法 process.memoryUsage()。
heapTotal 已申请到的堆内存
heapUsed 当前使用的堆内存
为什么 V8 要限制堆的大小:
V8 为浏览器而设计,不太可能遇到用大量内存的场景
V8 的垃圾回收机制的限制。(按官方的说法,以1.5GB的垃圾回收堆内存为例,V8做一次小的垃圾回收需要50ms以上,做一次非增量式的垃圾回收需要1s以上)
V8提供了选项让我们可以控制使用内存的大小
node --max-old-space-size=1700 test.js 设置老生代内存空间最大值,单位为MB
node --max-new-space-size=1024 test.js 设置新生代内存空间最大值,单位为KB
比较遗憾的是,这两个最大值需要在启动时执行。这意味着 V8 使用的内存没办法根据使用的情况自动扩充,当内存分配过程中超过极限值时,就会引起进程出错。
V8 的垃圾回收机制V8 的垃圾回收策略主要基于分代式垃圾回收机制。在 V8 中,主要将内存分为新生代和老生代两代。新生代中的对象为存活时间较短的对象,老生代中的对象为存活时间较长或常驻内存的对象。
V8 堆的整体大小就是新生代的内存空间加上老生代的内存空间
Scavenge 算法在分代的基础上,新生代中的对象主要通过 Scavenge 算法进行垃圾回收。在 Scavenge 的具体实现中,主要采用了 Cheney 算法。
Cheney 算法是一种采用复制的方式实现的垃圾回收算法。它将堆内存一分为二,每一部分空间成为 semispace。在这两个 semispace 空间中,只有一个处于使用中,另一个处于闲置中。处于使用中的 semispace 空间成为 From 空间,处于闲置状态的空间成为 To 空间。当我们分配对象时,先是在 From 空间中进行分配。当开始进行垃圾回收时,会检查 From 空间中的存活对象,这些存活对象将被复制到 To 空间中,而非存活对象占用的空间将被释放。完成复制后, From 空间和 To 空间的角色发生对换。
Scavenge 的缺点是只能使用堆内存的一半,但 Scavenge 由于只复制存活的对象,并且对于生命周期短的场景存活对象只占少部分,所以它在时间效率上表现优异。Scavenge 是典型的牺牲空间换取时间的算法,无法大规模地应用到所有的垃圾回收中,但非常适合应用在新生代中。
晋升对象从新生代中移动到老生代中的过程称为晋升。
From 空间中的存活对象在复制到 To 空间之前需要进行检查,在一定条件下,需要将存活周期长的对象移动到老生代中,也就是完成对象的晋升。
晋升条件主要有两个:
对象是否经历过一次 Scavenge 回收
To 空间已经使用超过 25%
设置 25% 这个限制值得原因是当这次 Scavenge 回收完成后,这个 To 空间将变成 From 空间,接下来的内存分配将在这个空间中进行,如果占比过高,会影响后续的内存分配。
Mark-Sweep & Mark-CompactV8 在老生代中主要采用了 Mark-Sweep 和 Mark-Compact 相结合的方式进行垃圾回收。
Mark-Sweep 是标记清除的意思,它分为两个阶段,标记和清除。Mark-Sweep 在标记阶段遍历堆中的所有对象,并标记活着的对象,在随后的清除阶段中,只清除未被标记的对象。
Mark-Sweep 最大的问题是在进行一次标记清除回收后,内存空间会出现不连续的状态。这种内存碎片会对后续的内存分配造成问题,因为很可能出现需要分配一个大对象的情况,这时所有的碎片空间都无法完成此次分配,就会提前触发垃圾回收,而这次回收是不必要的。