spark spark背景 什么是spark
Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。
Spark与HadoopSpark是一个计算框架,而Hadoop中包含计算框架MapReduce和分布式文件系统HDFS,Hadoop更广泛地说还包括在其生态系统上的其他系统.
为什么使用Spark?Hadoop的MapReduce计算模型存在问题:
Hadoop的MapReduce的核心是Shuffle(洗牌).在整个Shuffle的过程中,至少产生6次I/O流.基于MapReduce计算引擎通常会将结果输出到次盘上,进行存储和容错.另外,当一些查询(如:hive)翻译到MapReduce任务是,往往会产生多个Stage,而这些Stage有依赖底层文件系统来存储每一个Stage的输出结果,而I/O的效率往往较低,从而影响MapReduce的运行速度.
快:与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。
易用:Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
通用:Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。
兼容性:Spark 可以非常方便地与其他的开源产品进行融合。比如,Spark 可以使用Hadoop 的 YARN 和 Apache Mesos 作为它的资源管理和调度器.并且可以处理所有 Hadoop 支持的数据,包括 HDFS、HBase 和 Cassandra 等。这对于已经部署Hadoop 集群的用户特别重要,因为不需要做任何数据迁移就可以使用 Spark 的强大处理能力。Spark 也可以不依赖于第三方的资源管理和调度器,它实现了Standalone 作为其内置的资源管理和调度框架,这样进一步降低了 Spark 的使用门槛,使得所有人都可以非常容易地部署和使用 Spark。此外,Spark 还提供了在EC2 上部Standalone 的 Spark 集群的工具。
Spark的生态系统1.Spark Streaming:
Spark Streaming基于微批量方式的计算和处理,可以用于处理实时的流数据.它使用DStream,简单来说是一个弹性分布式数据集(RDD)系列,处理实时数据.数据可以从Kafka,Flume,Kinesis或TCP套接字等众多来源获取,并且可以使用由高级函数(如 map,reduce,join 和 window)开发的复杂算法进行流数据处理。最后,处理后的数据可以被推送到文件系统,数据库和实时仪表板。
2.Spark SQL
SPark SQL可以通过JDBC API将Spark数据集暴露出去,而且还可以用传统的BI和可视化工具在Spark数据上执行类似SQL的查询,用户哈可以用Spark SQL对不同格式的数据(如Json, Parque以及数据库等)执行ETl,将其转化,然后暴露特定的查询.
3.Spark MLlib
MLlib是一个可扩展的Spark机器学习库,由通用的学习算法和工具组成,包括二元分类、线性回归、聚类、协同过滤、梯度下降以及底层优化原语。
4.Spark Graphx:
GraphX是用于图计算和并行图计算的新的(alpha)Spark API。通过引入弹性分布式属性图(Resilient Distributed Property Graph),一种顶点和边都带有属性的有向多重图,扩展了Spark RDD。为了支持图计算,GraphX暴露了一个基础操作符集合(如subgraph,joinVertices和aggregateMessages)和一个经过优化的Pregel API变体。此外,GraphX还包括一个持续增长的用于简化图分析任务的图算法和构建器集合。
5.Tachyon
Tachyon是一个以内存为中心的分布式文件系统,能够提供内存级别速度的跨集群框架(如Spark和mapReduce)的可信文件共享.它将工作集文件缓存在内存中,从而避免到磁盘中加载需要经常读取的数据集,通过这一机制,不同的作业/查询和框架可以内存级的速度访问缓存文件.
此外,还有一些用于与其他产品集成的适配器,如Cassandra(Spark Cassandra 连接器)和R(SparkR)。Cassandra Connector可用于访问存储在Cassandra数据库中的数据并在这些数据上执行数据分析。