7. 条件判断,三目运算符, 可用字符 ! ~ & ^ | + << >>
思路:由于 X & 0xFFFFFFFF = X, X & 0x0 = 0, 将两个数和 0xFFFFFFFF, 0x0 做与操作,再相加
只需要找到什么时候为 0xFFFFFFFF 和 0x0, 注意这两者可通过 ~ 得到
/* * conditional - same as x ? y : z * Example: conditional(2,4,5) = 4 * Legal ops: ! ~ & ^ | + << >> * Max ops: 16 * Rating: 3 */ int conditional(int x, int y, int z) { int flag = (!!x + ~0); return (z & flag) + (y & ~flag); }8. 小于等于 可用字符 ! ~ & ^ | + << >>
思路:判断相等,同符号相减判断是否有进位,不同符号直接判断第一个数的符号是否为 正
9. 非运算符 可用字符 ! ~ & ^ | + << >>
思路:核心就是抓住 符号位判断
考虑取反还是取负,取反所有数字的符号位都改变,取负只有 0 和 0x80000000 符号位不变,且这两个符号位相反,所以用取负的方式
将数与其负数直接做与操作,只有 0x80000000,符号为 1 不变,不能筛选出 0 的情况
考虑别的情况,将数取反做与操作,符号相反的数与操作后仍然为 0, 0x800000000 取反(符号为0)与其负数(符号为0)相与也还为 0,只有0取反后符号为1,与操作后仍为1
/* * logicalNeg - implement the ! operator, using all of * the legal operators except ! * Examples: logicalNeg(3) = 0, logicalNeg(0) = 1 * Legal ops: ~ & ^ | + << >> * Max ops: 12 * Rating: 4 */ int logicalNeg(int x) { return ((~x & ~(~x + 1)) >> 31) & 0x1; }10. 计算一个最少的补码位可以表达的位数 可用字符 ! ~ & ^ | + << >>
思路:将相邻位做亦或操作,找到最高的位为 1 所在的位
~(bits16 << 3) + 1) + (((bits16 ^ 1) & 0x1) << 3, bits* 为上一个移位的结果,利用这个结果判断是增加位移的大小
11. 计算浮点数 f 2, 返回浮点数的二进制位表示, 可用符号不受限制*
思路:由于尾数的值取决于 frac 和 exp,所以要对其分开处理
对于规格数,exp + 1, 但要考虑 +1 后不能为 255
对于非规格数
exp = 255, 直接返回参数
exp = 0, frac = 0 返回 0, 因为这就是个 0
exp = 0, frac != 0, frac 左移一位(尾数取值的问题),又要判断左移后是否溢出(0-22bit)
/* * float_twice - Return bit-level equivalent of expression 2*f for * floating point argument f. * Both the argument and result are passed as unsigned int's, but * they are to be interpreted as the bit-level representation of * single-precision floating point values. * When argument is NaN, return argument * Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while * Max ops: 30 * Rating: 4 */ unsigned float_twice(unsigned uf) { int exp = 0x7f800000 & uf; int frac = 0x007FFFFF & uf; int sign = 0x80000000 & uf; int bias = (exp >> 23) - 127; if (uf == 0x0) return 0; if (bias == 128) // NaN return NaN, inf can't *2 return uf; // frac depends on exp, so exp could not add 1 alone. if (exp == 0) { // (exp + frac) << 1 frac = (frac << 1) & 0x007FFFFF; if (uf & 0x00400000) exp = 0x00800000; } else { exp = (exp + 0x00800000) & 0x7F800000; if (exp == 0x7F800000) frac = 0; } uf = sign | exp | frac; return sign | exp | frac; }