如何判断一个元素在亿级数据中是否存在?

如何判断一个元素在亿级数据中是否存在?

前言

最近有朋友问我这么一个面试题目:

现在有一个非常庞大的数据,假设全是 int 类型。现在我给你一个数,你需要告诉我它是否存在其中(尽量高效)。

需求其实很清晰,只是要判断一个数据是否存在即可。

但这里有一个比较重要的前提:非常庞大的数据

常规实现

先不考虑这个条件,我们脑海中出现的第一种方案是什么?

我想大多数想到的都是用 HashMap 来存放数据,因为它的写入查询的效率都比较高。

写入和判断元素是否存在都有对应的 API,所以实现起来也比较简单。

为此我写了一个单测,利用 HashSet 来存数据(底层也是 HashMap );同时为了后面的对比将堆内存写死:

-Xms64m -Xmx64m -XX:+PrintHeapAtGC -XX:+HeapDumpOnOutOfMemoryError

为了方便调试加入了 GC 日志的打印,以及内存溢出后 Dump 内存。

@Test public void hashMapTest(){ long star = System.currentTimeMillis(); Set<Integer> hashset = new HashSet<>(100) ; for (int i = 0; i < 100; i++) { hashset.add(i) ; } Assert.assertTrue(hashset.contains(1)); Assert.assertTrue(hashset.contains(2)); Assert.assertTrue(hashset.contains(3)); long end = System.currentTimeMillis(); System.out.println("执行时间:" + (end - star)); }

当我只写入 100 条数据时自然是没有问题的。

还是在这个基础上,写入 1000W 数据试试:

如何判断一个元素在亿级数据中是否存在?

执行后马上就内存溢出。

如何判断一个元素在亿级数据中是否存在?

可见在内存有限的情况下我们不能使用这种方式。

实际情况也是如此;既然要判断一个数据是否存在于集合中,考虑的算法的效率以及准确性肯定是要把数据全部 load 到内存中的。

Bloom Filter

基于上面分析的条件,要实现这个需求最需要解决的是如何将庞大的数据 load 到内存中。

而我们是否可以换种思路,因为只是需要判断数据是否存在,也不是需要把数据查询出来,所以完全没有必要将真正的数据存放进去。

伟大的科学家们已经帮我们想到了这样的需求。

Burton Howard Bloom 在 1970 年提出了一个叫做 Bloom Filter(中文翻译:布隆过滤)的算法。

它主要就是用于解决判断一个元素是否在一个集合中,但它的优势是只需要占用很小的内存空间以及有着高效的查询效率。

所以在这个场景下在合适不过了。

Bloom Filter 原理

下面来分析下它的实现原理。

官方的说法是:它是一个保存了很长的二级制向量,同时结合 Hash 函数实现的。

听起来比较绕,但是通过一个图就比较容易理解了。

如何判断一个元素在亿级数据中是否存在?

如图所示:

首先需要初始化一个二进制的数组,长度设为 L(图中为 8),同时初始值全为 0 。

当写入一个 A1=1000 的数据时,需要进行 H 次 hash 函数的运算(这里为 2 次);与 HashMap 有点类似,通过算出的 HashCode 与 L 取模后定位到 0、2 处,将该处的值设为 1。

A2=2000 也是同理计算后将 4、7 位置设为 1。

当有一个 B1=1000 需要判断是否存在时,也是做两次 Hash 运算,定位到 0、2 处,此时他们的值都为 1 ,所以认为 B1=1000 存在于集合中。

当有一个 B2=3000 时,也是同理。第一次 Hash 定位到 index=4 时,数组中的值为 1,所以再进行第二次 Hash 运算,结果定位到 index=5 的值为 0,所以认为 B2=3000 不存在于集合中。

整个的写入、查询的流程就是这样,汇总起来就是:

对写入的数据做 H 次 hash 运算定位到数组中的位置,同时将数据改为 1 。当有数据查询时也是同样的方式定位到数组中。
一旦其中的有一位为 0 则认为数据肯定不存在于集合,否则数据可能存在于集合中

所以布隆过滤有以下几个特点:

只要返回数据不存在,则肯定不存在。

返回数据存在,但只能是大概率存在。

同时不能清除其中的数据。

第一点应该都能理解,重点解释下 2、3 点。

为什么返回存在的数据却是可能存在呢,这其实也和 HashMap 类似。

在有限的数组长度中存放大量的数据,即便是再完美的 Hash 算法也会有冲突,所以有可能两个完全不同的 A、B 两个数据最后定位到的位置是一模一样的。

这时拿 B 进行查询时那自然就是误报了。

删除数据也是同理,当我把 B 的数据删除时,其实也相当于是把 A 的数据删掉了,这样也会造成后续的误报。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/zywzsg.html