此处我们需要触摸事件跟踪触摸的属性:
- touches :当前跟踪的触摸操作的 Touch 对象的数组,用于获取触摸开始时的 pageY 值;
- changeTouches :自上次触摸以来发生了改变的 Touch 对象的数组,用于获取触摸触摸结束时的 pageY 值。
相关代码如下:
// 手指接触屏幕 document.addEventListener('touchstart', event => { this.startY = event.touches[0].pageY; }); //手指离开屏幕 document.addEventListener('touchend', event => { let endY = event.changedTouches[0].pageY; if (endY - this.startY < 0) { // 手指向上滑动,对应页面向下滚动 this.goDown(); } else { // 手指向下滑动,对应页面向上滚动 this.goUp(); } });
为了避免下拉刷新,可以阻止 touchmove 事件的默认行为:
// 阻止 touchmove 下拉刷新 document.addEventListener('touchmove', event => { event.preventDefault(); });
6)PC 端滚动事件性能优化
6.1 防抖函数和截流函数介绍
优化主要从两方便入手:
- 更改页面大小时,通过防抖动(debounce)函数限制 resize 事件触发频率;
- 滚动/滑动事件触发时,通过截流(throttle)函数限制滚动/滑动事件触发频率。
既然都是限制触发频率(都通过定时器实现),那这两者有什么区别?
首先,防抖动函数工作时,如果在指定的延迟时间内,某个事件连续触发,那么绑定在这个事件上的回调函数永远不会触发,只有在延迟时间内,这个事件没再触发,对应的回调函数才会执行。防抖动函数非常适合改变窗口大小这一事件,这也符合 拖动到位以后再触发事件,如果一直拖个不停,始终不触发事件 这一直觉。
而截流函数是在延迟时间内,绑定到事件上的回调函数能且只能触发一次,这和截流函数不同,即便是在延迟时间内连续触发事件,也不会阻止在延迟时间内有一个回调函数执行。并且截流函数允许我们指定回调函数是在延迟时间开始时还是结束时执行。
鉴于截流函数的上述两个特性,尤其适合优化滚动/滑动事件:
- 可以限制频率;
- 不会因为滚动/滑动事件太灵敏(在延迟时间内不断触发)导致注册在事件上的回调函数无法执行;
- 可以设置在延迟时间开始时触发回调函数,从而避免用户感到操作之后的短暂延时。
这里不介绍防抖动函数和截流函数的实现原理,感兴趣的可以看 Throttling and Debouncing in JavaScript ,下面是实现的代码:
// 防抖动函数,method 回调函数,context 上下文,event 传入的时间,delay 延迟函数 debounce(method, context, event, delay) { clearTimeout(method.tId); method.tId = setTimeout(() => { method.call(context, event); }, delay); }, // 截流函数,method 回调函数,context 上下文,delay 延迟函数, // immediate 传入 true 表示在 delay 开始时执行回调函数 throttle(method, context, delay, immediate) { return function() { const args = arguments; const later = () => { method.tID = null; if (!immediate) { method.apply(context, args); } }; const callNow = immediate && !method.tID; clearTimeout(method.tID); method.tID = setTimeout(later, delay); if (callNow) { method.apply(context, args); } }; },
内容版权声明:除非注明,否则皆为本站原创文章。