Hadoop之服务器基础环境搭建(6)

硬件环境:CentOS 6.5 服务器4台(一台为Master节点,三台为Slave节点)
软件环境:Java 1.7.0_45、Hadoop-1.2.1

1、 输入数据分析

输入文件数据示例:

child parent Tom Jack Jack Alice Jack Jesse

第1列表示child,第2列表示parent,我们需要根据child和parent的关系得出child和grantparent的关系。比如说Tom的parent是Jack,Jack的parent是Alice和Jesse,由此我们可以得出Tom的grantparent是{Alice,Jesse}。

2、 Map过程

首先使用默认的TextInputFormat类对输入文件进行处理,得到文本中每行的偏移量及其内容。Map过程首先将输入分割成child和parent,然后正序输出一次作为右表,反序输出一次作为左表,需要注意的是在输出的value中必须加上左右表区别标志,其中左表标识符为1,右表标识符为2,如图所示。

Map过程

Map端核心代码实现如下,详细源码请参考:SingletonTableJoin\src\com\zonesion\tablejoin\SingletonTableJoin.java。

@Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { String childName = new String(); String parentName = new String(); String relationType = new String(); String line = value.toString(); String[] values = line.split(" "); if(values.length >= 2){ if(values[0].compareTo("child") != 0){ childName = values[0]; parentName = values[1]; relationType = "1"; context.write(new Text(parentName), new Text(relationType+" "+childName));//<"Lucy","1 Tom"> relationType = "2"; context.write(new Text(childName), new Text(relationType+" "+parentName));//<"Jone","2 Lucy"> } } } 3、 Reduce过程

Reduce过程首先对输入< key,values >即<”Lucy”,[“1 Tom”,”2 Mary”,”2 Ben”]>的values值进行遍历获取到单元信息(例如”1 Tom”),然后将单元信息中的用户ID(例如Tom)按照左表、右表标识符分别存入到grandChild集合和grandParent集合,最后对grandChild集合和grandParent集合进行笛卡尔积运算得到child与grandParent的关系,并进行输出,如图所示。

Reduce过程

Reduce端核心代码如下,详细源码请参考:SingletonTableJoin\src\com\zonesion\tablejoin\SingletonTableJoin.java。

public static class JoinReducer extends Reducer<Text, Text, Text, Text>{ @Override protected void reduce(Text key, Iterable<Text> values,Context context) throws IOException, InterruptedException { List<String> grandChild = new ArrayList<String>();//孙子 List<String> grandParent = new ArrayList<String>();//爷爷 Iterator<Text> it = values.iterator();//["1 Tom","2 Mary","2 Ben"] while(it.hasNext()){ String[] record = it.next().toString().split(" ");//"1 Tom"---[1,Tom] if(record.length == 0) continue; if(record[0].equals("1")){//左表,取出child放入grandchild grandChild.add(record[1]); }else if(record[0].equals("2")){//右表,取出parent放入grandParent grandParent.add(record[1]); } } //grandchild 和 grandparent数组求笛卡尔积 if(grandChild.size() != 0 && grandParent.size() != 0){ for(int i=0;i<grandChild.size();i++){ for(int j=0;j<grandParent.size();j++){ context.write(new Text(grandChild.get(i)), new Text(grandParent.get(j))); } } } } } 4、 驱动实现

驱动实现核心代码如下,详细源码请参考:SingletonTableJoin\src\com\zonesion\tablejoin\SingletonTableJoin.java。

public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs(); if(otherArgs.length != 2){ System.err.println("Usage: SingletonTableJoin <in> <out>"); } Job job = new Job(conf,"SingletonTableJoin Job"); job.setJarByClass(SingletonTableJoin.class); job.setMapperClass(JoinMapper.class); job.setReducerClass(JoinReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : -1); } 5、部署运行 1)启动Hadoop集群 [hadoop@K-Master ~]$ start-dfs.sh [hadoop@K-Master ~]$ start-mapred.sh [hadoop@K-Master ~]$ jps 5283 SecondaryNameNode 5445 JobTracker 5578 Jps 5109 NameNode 2)部署源码 #设置工作环境 [hadoop@K-Master ~]$ mkdir -p /usr/hadoop/workspace/MapReduce #部署源码 将SingletonTableJoin 文件夹拷贝到/usr/hadoop/workspace/MapReduce/ 路径下;

… 你可以直接 下载 SingletonTableJoin

3)编译文件 #切换工作目录 [hadoop@K-Master ~]$ cd /usr/hadoop/workspace/MapReduce/SingletonTableJoin #编译文件 [hadoop@K-Master SingletonTableJoin]$ javac -classpath /usr/hadoop/hadoop-core-1.2.1.jar:/usr/hadoop/lib/commons-cli-1.2.jar -d bin src/com/zonesion/tablejoin/SingletonTableJoin.java #查看编译文件 [hadoop@K-Master SingletonTableJoin]$ ls -la bin/com/zonesion/tablejoin/ 总用量 12 drwxrwxr-x 2 hadoop hadoop 122 7月 31 11:02 . drwxrwxr-x 3 hadoop hadoop 22 7月 31 11:02 .. -rw-rw-r-- 1 hadoop hadoop 1856 7月 31 11:02 SingletonTableJoin.class -rw-rw-r-- 1 hadoop hadoop 2047 7月 31 11:02 SingletonTableJoin$JoinMapper.class -rw-rw-r-- 1 hadoop hadoop 2074 7月 31 11:02 SingletonTableJoin$JoinReducer.class 4)打包jar文件 [hadoop@K-Master SingletonTableJoin]$ jar -cvf SingletonTableJoin.jar -C bin/ . added manifest adding: com/(in = 0) (out= 0)(stored 0%) adding: com/zonesion/(in = 0) (out= 0)(stored 0%) adding: com/zonesion/tablejoin/(in = 0) (out= 0)(stored 0%) adding: com/zonesion/tablejoin/SingletonTableJoin$JoinReducer.class(in = 2217) (out= 1006)(deflated 54%) adding: com/zonesion/tablejoin/SingletonTableJoin$JoinMapper.class(in = 1946) (out= 823)(deflated 57%) adding: com/zonesion/tablejoin/SingletonTableJoin.class(in = 1856) (out= 955)(deflated 48%) 5)上传输入文件 [hadoop@K-Master SingletonTableJoin]$ hadoop fs -mkdir /user/hadoop/SingletonTableJoin/input/ [hadoop@K-Master SingletonTableJoin]$ hadoop fs -put input/file01.txt /user/hadoop/SingletonTableJoin/input/ [hadoop@K-Master SingletonTableJoin]$ hadoop fs -ls /user/hadoop/SingletonTableJoin/input/ Found 1 items -rw-r--r-- 1 hadoop supergroup163 2014-07-31 11:08 /user/hadoop/SingletonTableJoin/input/file01.txt 6)运行Jar文件 [hadoop@K-Master SingletonTableJoin]$ hadoop jar SingletonTableJoin.jar com.zonesion.tablejoin.SingletonTableJoin SingletonTableJoin/input SingletonTableJoin/output 14/07/31 14:47:55 INFO input.FileInputFormat: Total input paths to process : 1 14/07/31 14:47:55 INFO util.NativeCodeLoader: Loaded the native-hadoop library 14/07/31 14:47:55 WARN snappy.LoadSnappy: Snappy native library not loaded 14/07/31 14:47:56 INFO mapred.JobClient: Running job: job_201407310921_0012 14/07/31 14:47:57 INFO mapred.JobClient: map 0% reduce 0% 14/07/31 14:48:00 INFO mapred.JobClient: map 100% reduce 0% 14/07/31 14:48:07 INFO mapred.JobClient: map 100% reduce 33% 14/07/31 14:48:08 INFO mapred.JobClient: map 100% reduce 100% 14/07/31 14:48:08 INFO mapred.JobClient: Job complete: job_201407310921_0012 .....

特别注意:在指定主类时,一定要使用完整包名com.zonesion.tablejoin.SingletonTableJoin,不然提示找不到。

7)查看输出结果 [hadoop@K-Master SingletonTableJoin]$ hadoop fs -cat SingletonTableJoin/output/part-r-00000 Tom Alice Tom Jesse Jone Alice Jone Jesse Tom Mary Tom Ben Jone Mary Jone Ben Philip Alice Philip Jesse Mark Alice Mark Jesse

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/15b442496928210d0ed65a66fc213372.html