Hadoop之服务器基础环境搭建(9)

硬件环境:CentOS 6.5 服务器4台(一台为Master节点,三台为Slave节点)
软件环境:Java 1.7.0_45、Hadoop-1.2.1

1、倒排索引

倒排索引是文档检索系统中最常用的数据结构,被广泛用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档的存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行了相反的操作(根据关键字来查找文档),因而称为倒排索引(Inverted Index)。通常情况下,倒排索引由一个单词(词组)以及相关的文档列表(标示文档的ID号,或者是指定文档所在位置的URI)组成,如下图所示:

 倒排索引结构

从上图可以看出,单词1出现在{文档1、文档4、文档13、……}中,单词2出现在{文档3、文档5、文档15、…..}中,而单词3出现在{文档1、文档8、文档20、….}中,还需要给每个文档添加一个权值,用来指出每个文档与搜素内容相关的相关度,如下图所示:

 添加权重的倒排索引

最常用的是使用词频作为权重,即记录单词在文档中出现的次数了。以英文为例,如下图所示,索引文件中的“MapReduce”一行表示:“MapReduce”这个单词在文本T0中出现过1次,T1中出现过1次,T2中出现过2次。当搜索条件为“MapReduce”、“is”、“simple”时,对应的集合为:{T0,T1,T2}∩{ T0,T1}∩{ T0,T1}={ T0,T1},即文本T0和T1包含所要索引的单词,而且只有T0是连续的。

 添加权重的倒排索引

2、Map过程

首先使用默认的TextInputFormat类对输入文件进行处理,得到文本中每行的偏移量及其内容。显然,Map过程首先必须分析输入的< key,value>对,得到倒排索引中需要的三个信息:单词、文档URI和词频,如下图所示。这里存在两个问题:第一,< key,value>对只能有两个值,在不使用Hadoop自定义数据类型的情况下,需要根据情况将其中两个值合并成一个值,作为key或value值;第二,通过一个Reduce过程无法同时完成词频统计和文档列表,所以必须增加一个Combine过程完成词频统计。

 map过程

这里将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value,这样做的好处是可以利用MapReduce框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过程,实现类似于WordCount的功能。
Map过程核心代码实现如下,详细源码请参考:InvertedIndex\src\com\zonesion\hdfs\InvertedIndex.java。

public static class InvertedIndexMapper extends Mapper<Object,Text,Object,Text>{ private Text keyInfo = new Text();//存储单词和URI的组合 private Text valueInfo = new Text();//存储词频 private FileSplit split;//存储Split对象 @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { split = (FileSplit)context.getInputSplit(); StringTokenizer itr = new StringTokenizer(value.toString()); while(itr.hasMoreTokens()){ //key值由单词和URI组成 keyInfo.set(itr.nextToken()+":"+split.getPath().toString()); valueInfo.set("1"); context.write(keyInfo, valueInfo);//输出:<key,value>---<"MapReduce:1.txt",1> } } } 3、Combine过程

经过map方法处理之后,Combine过程将key值相同的value值累加,得到一个单词在文档中的词频,如下图所示。如果直接将Map的输出结果作为Reduce过程的输入,在Shuffle过程时将面临一个问题:所有具有相同单词的记录(由单词、URI和词频组成)应该交由同一个Reduce处理,但当前key值无法保证这一点,所以必须修改key值和value值。这次将单词作为key值,URI和词频作为value值。这样做的好处是可以利用MapReduce框架默认的HashPartitioner类完成Shuffle过程,将相同单词的所有记录发送给同一个Reducer处理。

 combine过程

Combine过程核心代码实现如下,详细源码请参考:InvertedIndex\src\com\zonesion\hdfs\InvertedIndex.java。

public static class InvertedIndexCombiner extends Reducer<Text, Text, Text, Text>{ private Text info = new Text(); @Override protected void reduce(Text key, Iterable<Text> values,Context context) throws IOException, InterruptedException { //输入:<key,value>---<"MapReduce:1.txt",list(1,1,1,1)> int sum = 0; for(Text value : values){ sum += Integer.parseInt(value.toString()); } int splitIndex = key.toString().indexOf(":"); info.set(key.toString().substring(splitIndex+1)+":"+sum); key.set(key.toString().substring(0,splitIndex)); context.write(key, info);//输出:<key,value>----<"Mapreduce","0.txt:2"> } } 4、Reduce过程

经过上述两个过程后,Reduce过程只需要将相同key值的value值组合成倒排索引文件所需的格式即可,剩下的事情就可以直接交给MapReduce框架处理了,如下图所示。

 reduce过程

Reduce过程核心代码实现如下,详细源码请参考:InvertedIndex\src\com\zonesion\hdfs\InvertedIndex.java。

public static class InvertedIndexReducer extends Reducer<Text, Text, Text, Text>{ private Text result = new Text(); @Override protected void reduce(Text key, Iterable<Text> values,Context context) throws IOException, InterruptedException { //输入:<"MapReduce",list("0.txt:1","1.txt:1","2.txt:1")> String fileList = new String(); for(Text value : values){//value="0.txt:1" fileList += value.toString()+";"; } result.set(fileList); context.write(key, result);//输出:<"MapReduce","0.txt:1,1.txt:1,2.txt:1"> } } 5、驱动实现

驱动核心代码实现如下,详细源码请参考:InvertedIndex\src\com\zonesion\hdfs\InvertedIndex.java。

public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: InvertedIndex <in> <out>"); System.exit(2); } Job job = new Job(conf, "InvertedIndex"); job.setJarByClass(InvertedIndex.class); //设置Mapper类、Combiner类、Reducer类; job.setMapperClass(InvertedIndexMapper.class); job.setCombinerClass(InvertedIndexCombiner.class); job.setReducerClass(InvertedIndexReducer.class); //设置了Map过程和Reduce过程的输出类型,设置key、value的输出类型为Text; job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); //设置任务数据的输入、输出路径; FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //执行job任务,执行成功后退出; System.exit(job.waitForCompletion(true) ? 0 : 1); } 6、部署运行 1)启动Hadoop集群 [hadoop@K-Master CompanyJoinAddress]$ start-dfs.sh [hadoop@K-Master CompanyJoinAddress]$ start-mapred.sh [hadoop@K-Master CompanyJoinAddress]$ jps 5283 SecondaryNameNode 5445 JobTracker 5578 Jps 5109 NameNode 2)部署源码 #设置工作环境 [hadoop@K-Master ~]$ mkdir -p /usr/hadoop/workspace/MapReduce #部署源码 将InvertedIndex文件夹拷贝到/usr/hadoop/workspace/MapReduce/ 路径下;

… 你可以直接 下载 InvertedIndex

------------------------------------------分割线------------------------------------------

免费下载地址在

用户名与密码都是

具体下载目录在 /2015年资料/3月/8日/Hadoop入门基础教程/

下载方法见

------------------------------------------分割线------------------------------------------

3)编译文件 #切换工作目录 [hadoop@K-Master ~]$ cd /usr/hadoop/workspace/MapReduce/InvertedIndex #编译文件 [hadoop@K-Master InvertedIndex]$ javac -classpath /usr/hadoop/hadoop-core-1.2.1.jar:/usr/hadoop/lib/commons-cli-1.2.jar -d bin src/com/zonesion/hdfs/InvertedIndex.java [hadoop@K-Master InvertedIndex]$ ls bin/com/zonesion/hdfs/ -la 总用量 20 drwxrwxr-x 2 hadoop hadoop 4096 9月 18 17:09 . drwxrwxr-x 3 hadoop hadoop 17 9月 18 17:09 .. -rw-rw-r-- 1 hadoop hadoop 1982 9月 18 17:09 InvertedIndex.class -rw-rw-r-- 1 hadoop hadoop 2173 9月 18 17:09 InvertedIndex$InvertedIndexCombiner.class -rw-rw-r-- 1 hadoop hadoop 2103 9月 18 17:09 InvertedIndex$InvertedIndexMapper.class -rw-rw-r-- 1 hadoop hadoop 1931 9月 18 17:09 InvertedIndex$InvertedIndexReducer.class 4)打包jar文件 [hadoop@K-Master InvertedIndex]$ jar -cvf InvertedIndex.jar -C bin/ . 已添加清单 正在添加: com/(输入 = 0) (输出 = 0)(存储了 0%) 正在添加: com/zonesion/(输入 = 0) (输出 = 0)(存储了 0%) 正在添加: com/zonesion/hdfs/(输入 = 0) (输出 = 0)(存储了 0%) 正在添加: com/zonesion/hdfs/InvertedIndex$InvertedIndexMapper.class(输入 = 2103) (输出 = 921)(压缩了 56%) 正在添加: com/zonesion/hdfs/InvertedIndex$InvertedIndexCombiner.class(输入 = 2173) (输出 = 944)(压缩了 56%) 正在添加: com/zonesion/hdfs/InvertedIndex$InvertedIndexReducer.class(输入 = 1931) (输出 = 830)(压缩了 57%) 正在添加: com/zonesion/hdfs/InvertedIndex.class(输入 = 1982) (输出 = 1002)(压缩了 49%) 5)上传输入文件 #创建InvertedIndex/input/输入文件夹 [hadoop@K-Master InvertedIndex]$ hadoop fs -mkdir InvertedIndex/input/ #上传文件到InvertedIndex/input/输入文件夹 [hadoop@K-Master InvertedIndex]$ hadoop fs -put input/*.txt /user/hadoop/InvertedIndex/input #验证上传文件是否成功 [hadoop@K-Master InvertedIndex]$ hadoop fs -ls /user/hadoop/InvertedIndex/input Found 3 items -rw-r--r-- 1 hadoop supergroup 20 2014-09-18 17:12 /user/hadoop/InvertedIndex/input/0.txt -rw-r--r-- 1 hadoop supergroup 32 2014-09-18 17:12 /user/hadoop/InvertedIndex/input/1.txt -rw-r--r-- 1 hadoop supergroup 30 2014-09-18 17:12 /user/hadoop/InvertedIndex/input/2.txt 6)运行Jar文件 [hadoop@K-Master InvertedIndex]$ hadoop jar InvertedIndex.jar com.zonesion.hdfs.InvertedIndex InvertedIndex/input InvertedIndex/output 14/09/18 17:16:40 INFO input.FileInputFormat: Total input paths to process : 3 14/09/18 17:16:40 INFO util.NativeCodeLoader: Loaded the native-hadoop library 14/09/18 17:16:40 WARN snappy.LoadSnappy: Snappy native library not loaded 14/09/18 17:16:41 INFO mapred.JobClient: Running job: job_201409150922_0003 14/09/18 17:16:42 INFO mapred.JobClient: map 0% reduce 0% 14/09/18 17:16:45 INFO mapred.JobClient: map 100% reduce 0% 14/09/18 17:16:51 INFO mapred.JobClient: map 100% reduce 33% 14/09/18 17:16:53 INFO mapred.JobClient: map 100% reduce 100% 14/09/18 17:16:53 INFO mapred.JobClient: Job complete: job_201409150922_0003 14/09/18 17:16:53 INFO mapred.JobClient: Counters: 29 ...... 7)查看输出结果 #查看HDFS上output目录内容 [hadoop@K-Master InvertedIndex]$ hadoop fs -ls /user/hadoop/InvertedIndex/output Found 3 items -rw-r--r-- 1 hadoop supergroup 0 2014-07-21 15:31 /user/hadoop/InvertedIndex/output/_SUCCESS drwxr-xr-x - hadoop supergroup 0 2014-07-21 15:30 /user/hadoop/InvertedIndex/output/_logs -rw-r--r-- 1 hadoop supergroup665 2014-07-21 15:31 /user/hadoop/InvertedIndex/output/part-r-00000 #查看结果输出文件内容 [hadoop@K-Master InvertedIndex]$ hadoop fs -cat /user/hadoop/InvertedIndex/output/part-r-00000 Hello hdfs://Master:9000/user/hadoop/InvertedIndex/input/2.txt:1; MapReduce hdfs://Master:9000/user/hadoop/InvertedIndex/input/2.txt:2;hdfs://Master:9000/user/hadoop/InvertedIndex/input/1.txt:1;hdfs://Master:9000/user/hadoop/InvertedIndex/input/0.txt:1; Powerful hdfs://Master:9000/user/hadoop/InvertedIndex/input/1.txt:1; bye hdfs://Master:9000/user/hadoop/InvertedIndex/input/2.txt:1; is hdfs://Master:9000/user/hadoop/InvertedIndex/input/0.txt:1;hdfs://Master:9000/user/hadoop/InvertedIndex/input/1.txt:2; simple hdfs://Master:9000/user/hadoop/InvertedIndex/input/1.txt:1;hdfs://Master:9000/user/hadoop/InvertedIndex/input/0.txt:1;  

更多Hadoop相关信息见Hadoop 专题页面 ?tid=13

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/15b442496928210d0ed65a66fc213372.html