Amber11+AmberTools1.5+CUDA加速 安装总结

以下安装方法是根据分子模拟论坛网友的一些以前的帖子,进行了综合与总结,只要操作正确100%可以安装并测试成功。考虑到Amber11一般要安装在集群上使用,所以安装时采用intel的编译器,Openmpi并行器。Amber11软件需要购买获得使用license,AmberTools可以到免费下载。

安装环境:
Dell Precision Workstation T3400 à Q9550 8G ECC à Geforce GTX 560ti (2GB)
CentOS 6.2 X86-64 à Intel Compilers(iforc, icc, iMKL) à Openmpi-1.4.3
CUDA Toolkit 4.0

1.
安装intel compilers
从intel官方网站上下载非商业版本的intel C++ compiler (icc) and intel fortran compiler (ifort) 当前的版本为2011.6.233,同时会获得一个非商业的licenses (one year available),会发到你申请时填写的email中)。
下载地址:

解压,进入解压后的目录,进行安装:
cd /home/soft/l_fcompxe_2011.6.233
./install.sh
#激活产品选项时选择"Use a license file"
#安装选项中不需要的部分如Intel Debugger等可以去掉,但里面intel MKL应保留。
#用相同的方法安装icc (l_ccompxe_2011.6.233), 同样安装选项中只选择Intel C++ Compiler,
#为intel设置环境变量 gedit .bashrc
source /opt/intel/composer_xe_2011_sp1.6.233/bin/compilervars.sh intel64
export MKL_HOME=/opt/intel/mkl

2. 安装 nVidia toolkit
# 到Nvidia网站上下载"CUDA Toolkit 4.0" (CUDA Toolkit for RedHat Enterprise Linux 6.0)
下载地址: 并安装
./cudatoolkit_4.0.17_linux_64_rhel6.0.run
#为CUDA设置环境变量 gedit .bashrc
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/lib
export CUDA_HOME=/usr/local/cuda

3. 解压Amber与AmberTools
#首先为Amber11设置环境变量 gedit .bashrc
export AMBERHOME=/home/soft/amber11
export PATH=$PATH:/home/soft/amber11/bin
export DO_PARALLEL="mpirun -np 4"
#解压Amber11.tar.bz2到目录:/home/soft/amber11, 再解压 AmberTools-1.5.tar.bz2到相同的目录:/home/soft/amber11 (全部替换),
#集成自 l_fcompxe_2011.6.233里的intel MKL,安装时Amber时会有个错误提示,所以在进行AmberTools安装前要改一下/home/soft/amber11/AmberTools/src/configure文件,查找 "em64t" : mkll="$MKL_HOME/lib/em64t". 将em64t换成"intel64".

4. 为Amber11和AmberTools打补丁
#为AmberTools打补丁:到Amber网站上下载 "bugfix.all" for AmberTools1.5, 放在AMBERHOME目录下。下载地址:
cd $AMBERHOME
patch -p0 -N < bugfix.all
#为Amber11打补丁:到Amber网站上下载bugfix package of Amber11和apply_bugfix.x,下载地址:
chmod 700 apply_bugfix.x
./apply_bugfix.x bugfix.1to17.tar.bz2

5. 安装串行的AmberTools 1.5
cd /home/soft/amber11/AmberTools/src
./configure intel
make serial
#这一步大约要10多分钟,比较耗时时间。测试一下
cd ../test
make test
#检查一下check.diff 文件看看有无错误出现,该文件位于:
(/home/soft/amber11/AmberTools/test/logs/test_at_serial)

6. 安装串行的 Amber11
cd /home/soft/amber11
./AT15_Amber11.py
cd src
make serial
#测试方法:
cd /home/soft/amber11/test
make test
#同样在/home/soft/amber11/test/logs/test_amber_serial目录下你可以找到check.diff文件

7. 安装CUDA加速的PMEMD
# 目前Amber11中,只有PMEMD支持CUDA加速
cd /home/soft/amber11/AmberTools/src
make clean
./configure -cuda intel
cd /home/soft/amber11/
./AT15_Amber11.py
cd src
make clean
make cuda
#测试方法:
cd /home/soft/amber11/test/
./test_amber_cuda.sh
同样在/home/soft/amber11/test/logs/test_amber_cuda目录里有log文件。

8. Install openmpi-1.4.3 within AmberTools
#下载openmpi-1.4.3.tar.bz2()
# cp openmpi-1.4.3.tar.bz2 AmberTools/src

tar -zxvf openmpi-1.4.3.tar.bz2
./configure_openmpi intel
#添加openmpi的环境变量
export MPI_HOME=$AMBERHOME/AmberTools
export PATH=$AMBERHOME/AmberTools/exe:$PATH
export LD_LIBRARY_PATH=$AMBERHOME/AmberTools/lib:$LD_LIBRARY_PATH
#这时,openmpi还是不能生效,利用which mpirun发现intel里集成了mpir,所以将intel集成的mpi目录改一个名子,让openmpi生效。

9. 安装并行版本的Amber11
cd /home/soft/amber11/AmberTools/src
./configure –mpi intel
cd /home/soft/amber11
./AT15_Amber11.py
cd src
make clean
make parallel
#测试方法:
cd /home/soft/amber11/test
make test.parallel

10. 重新单独安装openmpi
#安装目录: /home/soft/openmpi
#将之前安装在ambertools目录中的openmpi环境变量屏蔽掉重新安装,并添加.bashrc
# openmpi
export MPI_HOME=/home/soft/openmpi
export PATH=/home/soft/openmpi/bin:$PATH
export LD_LIBRARY_PATH=/home/soft/openmpi/lib:$LD_LIBRARY_PATH
#这一步不是必须的,只是为了以后再安装别的并行软件如gromacs时方便

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/16196.html