Pytorch自定义dataloader以及在迭代过程中返回image的

pytorch官方给的加载数据的方式是已经定义好的dataset以及loader,如何加载自己本地的图片以及label?

形如数据格式为

image1 label1

image2 label2

...

imagen labeln

实验中我采用的数据的格式如下,一个图片的名字对应一个label,每一个label是一个9维的向量

1_-2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.304295635957 0.952577642997 0.0614006041909 0.0938333659301 -0.995587916479 0.126405046864 -0.999368204665 0.0355414055005 0.382030624629 0.0
1_0_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.271224474168 0.962516121742 0.061399602839 0.128727689658 -0.991679979588 0.126495313272 -0.999999890616 0.000467726796359 0.381981952872 0.0
1_2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.237868729379 0.971297311632 0.0614713240576 0.163626102983 -0.986522426721 0.1265439964 -0.999400990041 -0.0346072406472 0.382020891324 0.0
1.1_-2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.303575822293 0.95280728383 0.0675229548933 0.0939225945957 -0.995579502714 0.138745857429 -0.999376861795 0.0352971402251 0.410670255038 0.1
1.1_0_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.270745576918 0.962650940154 0.0674654115238 0.128659340525 -0.991688849436 0.138685653232 -0.999999909615 0.000425170029598 0.410739827476 0.1
1.1_2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.23757921143 0.971368168253 0.0674866175928 0.16322766122 -0.986588430204 0.138789623782 -0.999406504329 -0.0344476284471 0.410661183171 0.1
1.2_-2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.305474635089 0.952200213882 0.0736939767933 0.0939968709874 -0.995572492712 0.150981626608 -0.999370773952 0.0354690875311 0.437620875774 0.2
1.2_0_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.270346113421 0.962763199836 0.073518963401 0.128433455959 -0.991718129002 0.150964425444 -0.999999924062 0.000389711583812 0.437667827367 0.2
1.2_2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.237337349604 0.971427291403 0.0734898449879 0.162895476227 -0.986643331617 0.150931800731 -0.999411541516 -0.0343011761519 0.437608139736 0.2
1.3_-2_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.305514664536 0.952187371137 0.0795990377393 0.0941741911595 -0.995555735115 0.162914965783 -0.999378340534 0.0352552474342 0.462816755558 0.3
1.3_0_pitch_100_yaw_0_lat_29.7553171_lng_-95.3675684.jpg 0.272366931798 0.962193459998 0.0796135882128 0.128398130503 -0.991722703221 0.162940731132 -0.999999935257 0.000359841646368 0.462733965419 0.3

...

源程序如下

import torch
import torch.nn as nn
import math
import os
from PIL import Image
import random
from torchvision import datasets, transforms
import torch.utils.data as data
from torch.autograd import Variable

torch.cuda.set_device(0)
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
kwargs = {'num_workers': 1, 'pin_memory': True}
batch_size = 8
# load the data
def random_choose_data(label_path):
    random.seed(1)
    file = open(label_path)
    lines = file.readlines()
    slice_initial = random.sample(lines, 200000)  # if don't change this ,it will be all the same
    slice = list(set(lines)-set(slice_initial))
    random.shuffle(slice)

train_label = slice[:150000]
    test_label = slice[150000:200000]
    return train_label, test_label  # output the list and delvery it into ImageFolder


# def my data loader, return the data and corresponding label
def default_loader(path):
    return Image.open(path).convert('RGB')  # operation object is the PIL image object


class myImageFloder(data.Dataset):  # Class inheritance
    def __init__(self, root, label, transform=None, target_transform=None, loader=default_loader):
        # fh = open(label)
        c = 0
        imgs = []
        class_names = ['regression']
        for line in label:  # label is a list
            cls = line.split()  # cls is a list
            fn = cls.pop(0)
            if os.path.isfile(os.path.join(root, fn)):
                imgs.append((fn, tuple([float(v) for v in cls[:len(cls)-1]])))
                # access the last label
                # images is the list,and the content is the tuple, every image corresponds to a label
                # despite the label's dimension
                # we can use the append way to append the element for list
            c = c + 1
        print('the total image is',c)
        print(class_names)
        self.root = root
        self.imgs = imgs
        self.classes = class_names
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader
    def __getitem__(self, index):
        fn, label = self.imgs[index]  # even though the imgs is just a list, it can return the elements of it
        # in a proper way
        img = self.loader(os.path.join(self.root, fn))
        if self.transform is not None:
            img = self.transform(img)
        return img, torch.Tensor(label), fn

def __len__(self):
        return len(self.imgs)

def getName(self):
        return self.classes

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/1f2de4ccea99914fdd992d479ea496a6.html