Pytorch自定义dataloader以及在迭代过程中返回image的(2)

mytransform = transforms.Compose([transforms.ToTensor()])  # transform [0,255] to [0,1]
test_data_root = "/home/ying/data/google_streetview_train_test1"
data_label = "/home/ying/data/google_streetview_train_test1/label.txt"
# test_label="/home/ying/data/google_streetview_train_test1/label.txt"
train_label, test_label = random_choose_data(data_label)
test_loader = torch.utils.data.DataLoader(
        myImageFloder(root=test_data_root, label=test_label, transform=mytransform),batch_size=batch_size, shuffle=True, **kwargs)


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                    padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

def forward(self, x):
        residual = x

out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

out = self.conv2(out)
        out = self.bn2(out)

if self.downsample is not None:
            residual = self.downsample(x)

out += residual
        out = self.relu(out)

return out


class Bottleneck(nn.Module):
    expansion = 4

def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)  # decrease the channel, does't change size
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                              padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

def forward(self, x):
        residual = x

out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

out = self.conv3(out)
        out = self.bn3(out)

if self.downsample is not None:
            residual = self.downsample(x)

out += residual
        out = self.relu(out)

return out


class ResNet(nn.Module):

def __init__(self, block, layers, num_classes=9):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                              bias=False)  # the size become 1/2
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # the size become 1/2
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        # self.fc = nn.Linear(512 * block.expansion, num_classes)
        self.fc = nn.Linear(2048, num_classes)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/1f2de4ccea99914fdd992d479ea496a6.html