有个项目,要求在Linux下不经过BIOS重启,i386平台。
一、可行性分析
众所周知,BIOS中包含了CPU及其他各种设备的初始化代码,Linux系统运行之后是否能够将各种用到的设备返回到刚被BIOS初始化后的状态是是否可行的关键。
从项目的条件来看,外设并不是问题。因为要首先开起来的那个Linux只会用到磁盘系统。而通用的磁盘系统是不存在与启动相关的关键状态的。
另外就是核心系统(CPU、内存初始化数据分布等)。CPU的状态时可以设置的,因此问题貌似也不大,将CPU返回实模式即可。内存中的BIOS数据也不会被Linux改动,因此也不会有问题。
二、Linux如何重启x86系统
查阅Linux内核(2.6.33)中i386的关机代码(arch/x86/kernel/reboot.c),该文件与重启相关的关键点有三个(按代码的先后顺序):第一个是static int __init reboot_setup(char *str)函数和__setup("reboot=", reboot_setup);宏,这是在Linux启动时通过内核参数reboot=设置启动方式,记录到reboot_type变量中,默认为BOOT_KBD,即键盘启动。第二个是从static const unsigned long long real_mode_gdt_entries [3] = ... 一直到 void machine_real_restart(const unsigned char *code, int length)函数,这是专门为x86系统设计的不通过电源系统快速重启(直接跳到BIOS中重启)。第三个是static void native_machine_emergency_restart(void)函数,这是关机重启的最后阶段,且与前面的reboot_type呼应。要注意的是系统执行到这儿已经关闭了诸如中断控制器、重置了时钟、关闭了所有AP并确保接下来的代码都在唯一的BSP上执行。
首先将第一和第三点。第一点是启动时的reboot_type设置,它影响到了第三点中实际restart操作的行为。native_machine_emergency_restart函数是重启过程中最后的步骤,i386系统重启最后都会走到这里来。这个函数的结构是一个死循环中包含一个switch(reboot_type)分支结构,如果reboot_type选定的那种重启方式执行失败了(正常情况下,这里调用的函数如果成功就不会返回了,直接导致系统重启。如果失败就会返回),那么就把reboot_type设置为默认的BOOT_KBD,再来重启一次。
键盘方式看来是最稳妥最原始的重启方式,它的步骤是这样的:
for (i = 0; i < 10; i++) { kb_wait(); udelay(50); outb(0xfe, 0x64); /* pulse reset low */ udelay(50); }
0x64端口是i8042键盘控制器的控制端口,0xfe命令字的意思是将P32-P21三个针脚拉为低电平,持续6usec。这段代码的实际效果就相当于你按下机箱上的 RESET 键。
在那些重启方式中,还有一种方式是BOOT_BIOS,调用的就是第二个关键点中的machine_real_restart函数,它将CPU返回到实模式,然后跳到CPU上电后的那个地址(FFFF:0000),BIOS会在这个地址处放一个jump,跳到BIOS真正的开始处。
显然我就可以直接拿这个函数开刀,把它改造成项目所需要的样子,如此一来,省去了再去写代码进行实模式切换的麻烦,直接用现成的。
三、分析和改造machine_real_restart函数
为了尽量少更改原有的代码,另开了一个文件,将machine_real_restart函数和相关的结构体拷贝过来,然后慢慢改。当然,这个reboot文件也是要改的,就是再增加一种启动方式,我将它命名为BOOT_MBR,在第一点和第三点相关的地方增加一种启动方式即可。
接下来就是着手分析改造了。首先看这部分功能包含哪些东西:
static const unsigned long long real_mode_gdt_entries [3] = { 0x0000000000000000ULL, /* Null descriptor */ 0x00009b000000ffffULL, /* 16-bit real-mode 64k code at 0x00000000 */ 0x000093000100ffffULL /* 16-bit real-mode 64k data at 0x00000100 */ }; static const struct desc_ptr real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, (long)real_mode_gdt_entries }, real_mode_idt = { 0x3ff, 0 }; static const unsigned char real_mode_switch [] = { 0x66, 0x0f, 0x20, 0xc0, /* movl %cr0,%eax */ 0x66, 0x83, 0xe0, 0x11, /* andl $0x00000011,%eax */ 0x66, 0x0d, 0x00, 0x00, 0x00, 0x60, /* orl $0x60000000,%eax */ 0x66, 0x0f, 0x22, 0xc0, /* movl %eax,%cr0 */ 0x66, 0x0f, 0x22, 0xd8, /* movl %eax,%cr3 */ 0x66, 0x0f, 0x20, 0xc3, /* movl %cr0,%ebx */ 0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60, /* andl $0x60000000,%ebx */ 0x74, 0x02, /* jz f */ 0x0f, 0x09, /* wbinvd */ 0x24, 0x10, /* f: andb $0x10,al */ 0x66, 0x0f, 0x22, 0xc0 /* movl %eax,%cr0 */ }; static const unsigned char jump_to_bios [] = { 0xea, 0x00, 0x00, 0xff, 0xff /* ljmp $0xffff,$0x0000 */ }; void machine_real_restart(const unsigned char *code, int length) { local_irq_disable(); spin_lock(&rtc_lock); CMOS_WRITE(0x00, 0x8f); spin_unlock(&rtc_lock); memcpy(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY, sizeof(swapper_pg_dir [0]) * KERNEL_PGD_PTRS); load_cr3(swapper_pg_dir); *((unsigned short *)0x472) = reboot_mode; memcpy((void *)(0x1000 - sizeof(real_mode_switch) - 100), real_mode_switch, sizeof (real_mode_switch)); memcpy((void *)(0x1000 - 100), code, length); load_idt(&real_mode_idt); load_gdt(&real_mode_gdt); __asm__ __volatile__ ("movl $0x0010,%%eax\n" "\tmovl %%eax,%%ds\n" "\tmovl %%eax,%%es\n" "\tmovl %%eax,%%fs\n" "\tmovl %%eax,%%gs\n" "\tmovl %%eax,%%ss" : : : "eax"); __asm__ __volatile__ ("ljmp $0x0008,%0" : : "i" ((void *)(0x1000 - sizeof (real_mode_switch) - 100))); }
首先是准备了与实模式对应的GDT表和IDT表。其中GDT表是为段寄存器设置的。段寄存器的可见部分是16为,还有48位不可见部分为对应的GDT表项,制定了段基址和段长度。machine_real_restart只是用了第三个,即基址为0x100,长度为64K的段,该entry偏移为0x10。