在单片机开发中,经常需要对输入的数据进行过滤处理,如传感器数据输出,AD采样等,合适的滤波处理能达到更好效果。下面分享几种较简单而常用的滤波算法:
一、限幅滤波法(又称程序判断滤波法)
二、中位值滤波法
三、算术平均滤波法
四、递推平均滤波法
五、中位值平均滤波法
六、限幅平均滤波法
七、一阶滞后滤波法
八、加权递推平均滤波法
九、消抖滤波法
十、限幅消抖滤波法
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:
能有效克服因偶然因素引起的脉冲干扰
C、缺点:
无法抑制那种周期性的干扰
平滑度差
int Filter_Value; int Value; void setup() { Serial.begin(9600); // 初始化串口通信 randomSeed(analogRead(0)); // 产生随机种子 Value = 300; } void loop() { Filter_Value = Filter(); // 获得滤波器输出值 Value = Filter_Value; // 最近一次有效采样的值,该变量为全局变量 Serial.println(Filter_Value); // 串口输出 delay(50); } // 用于随机产生一个300左右的当前值 int Get_AD() { return random(295, 305); } // 限幅滤波法(又称程序判断滤波法) #define FILTER_A 1 int Filter() { int NewValue; NewValue = Get_AD(); if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A)) return Value; else return NewValue; }
二、中位值滤波法A、方法:
连续采样N次(N取奇数)
把N次采样值按大小排列
取中间值为本次有效值
B、优点:
能有效克服因偶然因素引起的波动干扰
对温度、液位的变化缓慢的被测参数有良好的滤波效果
C、缺点:
对流量、速度等快速变化的参数不宜
/* N值可根据实际情况调整排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;count<N;count++) { value_buf[count] =get_ad(); delay(); } for (j=0;j<N-1;j++) { for (i=0;i<N-j;i++) { if (value_buf>value_buf[i+1] ) { temp = value_buf; value_buf = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; }
三、算术平均滤波法A、方法:
连续取N个采样值进行算术平均运算
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM
#define N 12 char filter() { int sum = 0; for (count=0;count<N;count++) { sum + = get_ad(); delay(); } return (char)(sum/N); }
四、递推平均滤波法A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
B、优点:
对周期性干扰有良好的抑制作用,平滑度高
适用于高频振荡的系统
C、缺点:
灵敏度低
对偶然出现的脉冲性干扰的抑制作用较差
不易消除由于脉冲干扰所引起的采样值偏差
不适用于脉冲干扰比较严重的场合
比较浪费RAM