mini2440 ADC可调电阻驱动程序开发源代码(杂项设备

/*********************************************************/

/****s3c2440 ADC可调电阻驱动程序开发源代码(杂项设备驱动框架)****/

/********************************************************/

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/serio.h>
#include <linux/clk.h>
#include <linux/miscdevice.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>

#include <plat/regs-adc.h>

#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/poll.h>

#define DEVICE_NAME    "adc_driver"  /*设备名称*/

static void __iomem *adc_base;  /*定义了一个用来保存经过虚拟映射后的内存地址 */
static struct clk *adc_clk;    /*保存从平台时钟队列中获取ADC的时钟 */


DECLARE_MUTEX(ADC_LOCK);  /*申明并初始化一个信号量ADC_LOCK,对ADC资源进行互斥访问*/
static DECLARE_WAIT_QUEUE_HEAD(adc_waitq); /*定义并初始化一个等待队列adc_waitq,对ADC资源进行阻塞访问 */


static volatile int ev_adc = 0;  ///*用于标识AD转换后的数据是否可以读取,0表示不可读取 */
static int adc_data; /*用于保存读取的AD转换后的值,该值在ADC中断中读取*/

/*ADC中断服务程序,该服务程序主要是从ADC数据寄存器中读取AD转换后的值*/
static irqreturn_t adc_irq(int irq, void *dev_id)
{
 /*保证了应用程序读取一次这里就读取 AD转换的值一次,
 避免应用程序读取一次后发生多次中断多次读取AD转换值*/
 if(!ev_adc)
 {
 /*读取AD转换后的值保存到全局变量adc_data 中,S3C2410_ADCDAT0定义在regs-adc.h中,
 这里为什么要与上一个0x3ff,很简单,因为AD转换后的数据是保存在ADCDAT0的第0-9位,
 所以与上0x3ff(即:1111111111)后就得到第0-9位的数据,多余的位就都为0*/
  adc_data = readl(adc_base + S3C2410_ADCDAT0) & 0x3ff;
  ev_adc = 1; //将可读标识为1,并唤醒等待队列
  wake_up_interruptible(&adc_waitq);
 }
    return IRQ_HANDLED;
}

/*ADC设备驱动的打开接口函数*/
static int adc_open(struct inode *inode, struct file *file)
{
 int ret;

/*申请ADC中断服务,这里使用的是共享中断:IRQF_SHARED,为什么要使用共享中断,因为在触摸屏驱动中
 也使用了这个中断号。中断服务程序为:adc_irq在下面实现,IRQ_ADC是ADC的中断号,这里注意:
 申请中断函数的最后一个参数一定不能为NULL,否则中断申请会失败,如果中断服务程序中用不到这个
 参数,就随便给个值就好了,我这里就给个1*/
 ret = request_irq(IRQ_ADC, adc_irq, IRQF_SHARED, DEVICE_NAME, 1);
 if (ret)
 {
  /*错误处理*/
  printk(KERN_ERR "IRQ%d error %d\n", IRQ_ADC, ret);
  return -EINVAL;
 }

return 0;
}


/*设置ADC控制寄存器,开启AD转换*/
static void start_adc(void)
{
 unsigned int tmp;

tmp = (1 << 14) | (255 << 6) | (0 << 3);/* 0 1 00000011 000 0 0 0 */
 writel(tmp, adc_base + S3C2410_ADCCON); /*AD预分频器使能、模拟输入通道设为AIN0*/

tmp = readl(adc_base + S3C2410_ADCCON);
 tmp = tmp | (1 << 0);                /* 0 1 00000011 000 0 0 1 */
 writel(tmp, adc_base + S3C2410_ADCCON); /*AD转换开始*/
}


/*ADC设备驱动的读接口函数*/
static ssize_t adc_read(struct file *filp, char *buffer, size_t count, loff_t *ppos)
{
 /*试着获取信号量(即:加锁)*/
 if (down_trylock(&ADC_LOCK))
 {
  return -EBUSY;
 }

if(!ev_adc)/*表示还没有AD转换后的数据,不可读取*/
 {
  if(filp->f_flags & O_NONBLOCK) //应用程序若采用非阻塞方式读取则返回错误
  {
    return -EAGAIN;
  }
  else/*以阻塞方式进行读取*/
  {
  start_adc();  /*设置ADC控制寄存器,开启AD转换*/
  wait_event_interruptible(adc_waitq, ev_adc); /*使等待队列进入睡眠*/
  }
 }
 /*能到这里就表示已有AD转换后的数据,则标识清0,给下一次读做判断用*/
    ev_adc = 0;
 /*将读取到的AD转换后的值发往到上层应用程序*/
 copy_to_user(buffer, (char *)&adc_data, sizeof(adc_data));
 up(&ADC_LOCK); /*释放获取的信号量(即:解锁)*/

return sizeof(adc_data);
}
 


/*ADC设备驱动的关闭接口函数*/
static int adc_release(struct inode *inode, struct file *filp)
{
    return 0;
}

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/51525ba340b2bd84b0d118db5a4761af.html