设计集群方案时,至少要考虑以下因素:
(1)高可用要求:根据故障转移的原理,至少需要3个主节点才能完成故障转移,且3个主节点不应在同一台物理机上;每个主节点至少需要1个从节点,且主从节点不应在一台物理机上;因此高可用集群至少包含6个节点。
(2)数据量和访问量:估算应用需要的数据量和总访问量(考虑业务发展,留有冗余),结合每个主节点的容量和能承受的访问量(可以通过benchmark得到较准确估计),计算需要的主节点数量。
(3)节点数量限制:Redis官方给出的节点数量限制为1000,主要是考虑节点间通信带来的消耗。在实际应用中应尽量避免大集群;如果节点数量不足以满足应用对Redis数据量和访问量的要求,可以考虑:
a.业务分割,大集群分为多个小集群;
b.减少不必要的数据;
c.调整数据过期策略等。
(4)适度冗余:Redis可以在不影响集群服务的情况下增加节点,因此节点数量适当冗余即可,不用太大。
集群的原理:
集群最核心的功能是数据分区,因此首先介绍数据的分区规则;然后介绍集群实现的细节:通信机制和数据结构;最后以cluster meet(节点握手)、cluster addslots(槽分配)为例,说明节点是如何利用上述数据结构和通信机制实现集群命令的。
数据分区方案:
数据分区有顺序分区、哈希分区等,其中哈希分区由于其天然的随机性,使用广泛;集群的分区方案便是哈希分区的一种。
哈希分区的基本思路是:对数据的特征值(如key)进行哈希,然后根据哈希值决定数据落在哪个节点。常见的哈希分区包括:哈希取余分区、一致性哈希分区、带虚拟节点的一致性哈希分区等。
(1)哈希取余分区
哈希取余分区思路非常简单:计算key的hash值,然后对节点数量进行取余,从而决定数据映射到哪个节点上。该方案最大的问题是,当新增或删减节点时,节点数量发生变化,系统中所有的数据都需要重新计算映射关系,引发大规模数据迁移。
(2)一致性哈希分区
一致性哈希算法将整个哈希值空间组织成一个虚拟的圆环,范围为0-2^32-1;对于每个数据,根据key计算hash值,确定数据在环上的位置,然后从此位置沿环顺时针行走,找到的第一台服务器就是其应该映射到的服务器。
与哈希取余分区相比,一致性哈希分区将增减节点的影响限制在相邻节点。如果在node1和node2之间增加node5,则只有node2中的一部分数据会迁移到node5;如果去掉node2,则原node2中的数据只会迁移到node4中,只有node4会受影响。
一致性哈希分区的主要问题在于,当节点数量较少时,增加或删减节点,对单个节点的影响可能很大,造成数据的严重不平衡。还是以上图为例,如果去掉node2,node4中的数据由总数据的1/4左右变为1/2左右,与其他节点相比负载过高。
(3)带虚拟节点的一致性哈希分区
该方案在一致性哈希分区的基础上,引入了虚拟节点的概念。Redis集群使用的便是该方案,其中的虚拟节点称为槽(slot)。槽是介于数据和实际节点之间的虚拟概念;每个实际节点包含一定数量的槽,每个槽包含哈希值在一定范围内的数据。引入槽以后,
数据的映射关系由数据hash->实际节点,变成了数据hash->槽->实际节点。
在使用了槽的一致性哈希分区中,槽是数据管理和迁移的基本单位。槽解耦了数据和实际节点之间的关系,增加或删除节点对系统的影响很小。仍以上图为例,系统中有4个实际节点,假设为其分配16个槽(0-15); 槽0-3位于node1,4-7位于node2,
以此类推。如果此时删除node2,只需要将槽4-7重新分配即可,例如槽4-5分配给node1,槽6分配给node3,槽7分配给node4;可以看出删除node2后,数据在其他节点的分布仍然较为均衡。槽的数量一般远小于2^32,远大于实际节点的数量;
在Redis集群中,槽的数量为16384
下面这张图很好的总结了Redis集群将数据映射到实际节点的过程:
(1)Redis对数据的特征值(一般是key)计算哈希值,使用的算法是CRC16。 Crc16(key) = hash
(2)根据哈希值,计算数据属于哪个槽。 Hash % 16384
(3)根据槽与节点的映射关系,计算数据属于哪个节点。
Redis集群搭建:
一、主/从(master/slave)(缺点: 数据冗余,浪费内存 (ping - pong)