二叉树的定义:
二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。
二叉树的遍历方式主要有:先序遍历(NLR),中序遍历(LNR),后序遍历(LRN),和层次遍历。
注意:
由二叉树的先序序列和中序序列可以唯一地确定一颗二叉树;
由二叉树的后序序列和中序序列可以唯一地确定一颗二叉树;
由二叉树的层序序列和中序序列可以唯一地确定一棵二叉树;
但,由二叉树的先序序列和后序序列无法唯一地确定一棵二叉树。
Java实现链式存储的二叉树以及其各种遍历算法:
树节点:
public class TreeNode<E> {
private E data; //数据域
private TreeNode<E> lchild; //左孩子
private TreeNode<E> rchild; //右孩子
TreeNode(){}
TreeNode(E e){
this.data = e;
}
TreeNode(E data,TreeNode<E> lchild, TreeNode<E> rchild){
this.data = data;
this.lchild = lchild;
this.rchild = rchild;
}
public void setData(E data){
this.data = data;
}
public E getData(){
return this.data;
}
public void setLchild(TreeNode<E> lchild){
this.lchild = lchild;
}
public TreeNode<E> getLchild(){
return this.lchild;
}
public void setRchild(TreeNode<E> rchild){
this.rchild = rchild;
}
public TreeNode<E> getRchild(){
return this.rchild;
}
}
二叉树的Java实现:
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Stack;
/**
* @author Cherish
* 二叉树的链式存储结构
* @param <E>
*/
public class BinaryTree<E> {
private TreeNode<E> root; //根节点
private List<TreeNode> nodeList = null; //二叉树节点的链式结构
public BinaryTree(){
}
public BinaryTree(TreeNode<E> root){
this.root = root;
}
//把一个数组转化为一颗完全二叉树
public TreeNode<E> buildTree(E[] array){
nodeList = new LinkedList<TreeNode>();
//将数组中的元素依次转换为TreeNode节点,存放于链表中
for(int i=0; i< array.length; i++){
nodeList.add(new TreeNode(array[i]));
}
//对前(array.length / 2 - 1)个父节点,按照父节点与孩子节点的数字关系建立完全二叉树
//对完全二叉树,按从上到下,从左到右的顺序依次编号0,1,2,3....N,则i>0的节点,其左孩子为(2*i+1),
//其右孩子为(2*i+2)
for(int j=0; j < (array.length/2-1);j++){
//左孩子
nodeList.get(j).setLchild(nodeList.get(j*2+1));
//右孩子
nodeList.get(j).setRchild(nodeList.get(j*2+2));
}
//最后一个父节点:因为最后一个父节点可能没有右孩子,所以单独处理
int index = array.length/2 -1;
//左孩子
nodeList.get(index).setLchild(nodeList.get(index*2+1));
//右孩子:如果数组的长度为奇数才有右孩子
if(array.length % 2 == 1){
nodeList.get(index).setRchild(nodeList.get(index*2+2));
}
root=nodeList.get(0); //设置根节点
return root;
}
//得到树的高度
public int height(TreeNode<E> node){
if(node == null){
return 0;
}else{
int i = height(node.getLchild());
int j = height(node.getRchild());
return (i<j)?(j+1):(i+1);
}
}
//得到节点的个数
public int size(TreeNode<E> node){
if(node == null){
return 0;
}else{
return 1+ size(node.getLchild())+size(node.getRchild());
}
}
//递归实现先序遍历 NLR
public void preOrder(TreeNode<E> node){
if(node != null){
System.out.print(node.getData() + " ");
preOrder(node.getLchild());
preOrder(node.getRchild());
}
}
//非递归实现先序遍历 NLR
public void nonRecPreOrder(TreeNode<E> node){
Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
TreeNode<E> nodeTemp = node; //nodeTemp作为遍历指针
while(nodeTemp != null || !nodeStack.isEmpty()){ //当nodeTemp非空或栈非空时循环
if(nodeTemp != null){ //根指针非空,遍历左子树
nodeStack.push(nodeTemp); //根指针进栈
System.out.print(nodeStack.peek().getData() + " "); //根指针退栈,访问根节点
nodeTemp = nodeTemp.getLchild(); //每遇到非空二叉树先向左走
}else{ //再向右子树走
nodeTemp = nodeStack.pop();
nodeTemp = nodeTemp.getRchild();
}
}
}
//递归实现中序遍历 LNR
public void inOrder(TreeNode<E> node){
if(node != null){
inOrder(node.getLchild());
System.out.print(node.getData() + " ");
inOrder(node.getRchild());
}
}
//非递归实现中序遍历 LNR
public void nonRecInOrder(TreeNode<E> node){
Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
TreeNode<E> nodeTemp = node; //nodeTemp作为遍历指针
while(nodeTemp != null || !nodeStack.isEmpty()){ //当nodeTemp非空或栈非空时循环
if(nodeTemp != null){ //根指针非空,遍历左子树
nodeStack.push(nodeTemp); //根指针进栈
nodeTemp = nodeTemp.getLchild(); //每遇到非空二叉树先向左走
}else{
nodeTemp = nodeStack.pop(); //根指针退栈,访问根节点
System.out.print(nodeTemp.getData() +" ");
nodeTemp = nodeTemp.getRchild(); //再向右子树走
}
}
}
//递归实现后序遍历 LNR
public void postOrder(TreeNode<E> node){
if(node != null){
postOrder(node.getLchild());
postOrder(node.getRchild());
System.out.print(node.getData() + " ");
}
}
//非递归实现后序遍历 LNR
public void nonRecPostOrder(TreeNode<E> node){
Stack<TreeNode<E>> nodeStack = new Stack<TreeNode<E>>();
TreeNode<E> nodeTemp = node; //nodeTemp作为遍历指针
TreeNode<E> preNode = null; //表示最近一次访问的节点
while(nodeTemp != null || !nodeStack.isEmpty()){ //当nodeTemp非空或栈非空时循环
while(nodeTemp != null){ //一直向左走,遍历左子树
nodeStack.push(nodeTemp);
nodeTemp = nodeTemp.getLchild();
}
nodeTemp = nodeStack.peek();
if(nodeTemp.getRchild()==null || nodeTemp.getRchild() == preNode){ //右子树为空或右子树已被访问时,该节点出栈
nodeTemp = nodeStack.pop();
System.out.print(nodeTemp.getData()+" ");
preNode = nodeTemp; //将该节点赋值给最近一个访问节点
nodeTemp = null; //此处很重要,将刚出栈节点设置为空,对应于while循环的条件之一,否则陷入死循环
}else{
nodeTemp = nodeTemp.getRchild(); //遍历右子树
}
}
}
//层次遍历
public void levelOrder(TreeNode<E> root){
Queue<TreeNode<E>> nodeQueue = new LinkedList<TreeNode<E>>();
TreeNode<E> node = null;
nodeQueue.add(root); //将根节点入队
while(!nodeQueue.isEmpty()){ //队列不空循环
node = nodeQueue.peek();
System.out.print(node.getData()+" ");
nodeQueue.poll(); //队头元素出队
if(node.getLchild() != null){ //左子树不空,则左子树入队列
nodeQueue.add(node.getLchild());
}
if(node.getRchild() != null){ //右子树不空,则右子树入队列
nodeQueue.add(node.getRchild());
}
}
}
public static void main(String args[]){
//将一个数组转化为一颗完全二叉树
Object[] array = {1,2,3,4,5,6,7,8};
BinaryTree bt = new BinaryTree();
TreeNode root = bt.buildTree(array);
System.out.print("树的高度:");
System.out.println(bt.height(root));
System.out.print("节点的个数:");
System.out.println(bt.size(root));
System.out.println("先序遍历:");
bt.preOrder(root);
System.out.println("\n"+"非递归先序遍历:");
bt.nonRecPreOrder(root);
System.out.println();
System.out.println("中序遍历:");
bt.inOrder(root);
System.out.println("\n"+"非递归中序遍历:");
bt.nonRecInOrder(root);
System.out.println();
System.out.println("后序遍历:");
bt.postOrder(root);
System.out.println("\n"+"非递归后序遍历:");
bt.nonRecPostOrder(root);
System.out.println();
System.out.println("层次遍历:");
bt.levelOrder(root);
//手工构建一颗二叉树
TreeNode nodeA = new TreeNode("A");
TreeNode nodeB = new TreeNode("B");
TreeNode nodeC = new TreeNode("C");
TreeNode nodeD = new TreeNode("D");
TreeNode nodeE = new TreeNode("E");
TreeNode nodeF = new TreeNode("F");
TreeNode nodeG = new TreeNode("G");
TreeNode nodeH = new TreeNode("H");
TreeNode nodeI = new TreeNode("I");
nodeA.setLchild(nodeB);
nodeA.setRchild(nodeD);
nodeB.setRchild(nodeC);
nodeD.setLchild(nodeE);
nodeD.setRchild(nodeF);
nodeF.setLchild(nodeG);
nodeF.setRchild(nodeI);
nodeG.setRchild(nodeH);
System.out.println("\n\n"+"*****************");
System.out.print("树的高度:");
System.out.println(bt.height(nodeA));
System.out.print("节点的个数:");
System.out.println(bt.size(nodeA));
System.out.println("先序遍历:");
bt.preOrder(nodeA);
System.out.println();
System.out.println("中序遍历:");
bt.inOrder(nodeA);
System.out.println();
System.out.println("后序遍历:");
bt.postOrder(nodeA);
System.out.println();
System.out.println("层次遍历:");
bt.levelOrder(nodeA);
}
}
上述程序的运行结果: