这是在看了台大李宏毅教授的深度学习视频之后的一点总结和感想。看完介绍的第一部分RNN尤其LSTM的介绍之后,整个人醍醐灌顶。本篇博客就是对视频的一些记录加上了一些个人的思考。0. 从RNN说起
循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN就能够很好地解决这类问题。
1. 普通RNN先简单介绍一下一般的RNN。
其主要形式如下图所示(图片均来自台大李宏毅教授的PPT):
这里:
为当前状态下数据的输入, 表示接收到的上一个节点的输入。 为当前节点状态下的输出,而 为传递到下一个节点的输出。通过上图的公式可以看到,输出 h' 与 x 和 h 的值都相关。
而 y 则常常使用 h' 投入到一个线性层(主要是进行维度映射)然后使用softmax进行分类得到需要的数据。
对这里的y如何通过 h' 计算得到往往看具体模型的使用方式。
通过序列形式的输入,我们能够得到如下形式的RNN。
2. LSTM2.1 什么是LSTM长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
LSTM结构(图右)和普通RNN的主要输入输出区别如下所示。
相比RNN只有一个传递状态
,LSTM有两个传输状态,一个 (cell state),和一个 (hidden state)。(Tips:RNN中的 对于LSTM中的 )其中对于传递下去的
改变得很慢,通常输出的 是上一个状态传过来的 加上一些数值。而
则在不同节点下往往会有很大的区别。下面具体对LSTM的内部结构来进行剖析。
首先使用LSTM的当前输入
和上一个状态传递下来的 拼接训练得到四个状态。