进程是正在执行的程序实例。执行程序时,内核会将程序代码载入虚拟内存,为程序变量分配空间,在内核中建立相应的数据结构,以记录与进程有关的各种信息(比如,进程ID、用户ID、组ID以及终止状态等)
在内核看来,进程是一个个实体,内核必须在它们之间共享各种计算机资源。对于像内存这样的受限资源来说,内核一开始会为进程分配一定数量的资源,并在进程的生命周期内,统筹该进程和整个系统对资源的需求,对这一分配进行调整。程序终止时,内核会释放所有此类资源,供其他进程重新使用。其他资源(如CPU、网络带宽等)等属于可再生资源,但必须在所有进程间平等共享。
进程的内存布局
逻辑上将一个进程划分为以下几个部分(也称为段)
文本:程序的指令。
数据:程序使用的静态变量。
堆:程序可从该区域动态分配额外内存。
栈:随函数调用、返回而增减的一片内存,用于为局部变量和函数调用链接信息分配存储空间。
创建进程和执行程序
进程可使用系统调用fork()来创建一个新进程。调用fork()的进程被称为父进程,新创建的进程则被称为子进程。内核通过对父进程的复制来创建子进程。子进程从父进程处继承数据段、栈段以及堆段的副本后,可以修改这些内容,不会影响父进程的“原版”内容。(在内存中被标记为只读的程序文本段则由父、子进程共享)
然后,子进程要么去执行与父进程共享代码中的另一组不同函数,或者,更为常见的情况是使用系统调用execve()去加载并执行一个全新程序。execve()会销毁现有的文本段、数据段、栈段及堆段,并根据新程序的代码,创建新段来替换它们。
进程ID和父进程ID
每一进程都有一个唯一的整数型进程标识符(PID).此外,每一进程还具有一个父进程标识符(PPID)属性,用以标识请求内核创建自己的进程。
进程终止和终止状态
可使用以下两种方式之一来终止一个进程:其一,进程可使用_exit( )系统调用(或相关的exit()库函数),请求退出;其二,向进程传递信号,将其"杀死”。无论以何种方式退出,进程都会生成“终止状态”,一个非负小整数,可供父进程的wait()系统调用检测。在调用_exit()的情况下,进程会指明自己的终止状态。若由信号来“杀死”进程,则会根据导致进程“死亡”的信号类型来设置进程的终止状态。(有时会将传递进_exit()的参数称为进程的“退出状态”,以示与终止状态有所不同,后者要第指传递给_exit()的参数值,要么表示“杀死”进程的信号。)
根据 惯例,终止状态为0表示进程“功成身退”,非0则表示有错误发生。大多数shell会将前一执行程序的终止状态保存于shell变量$?中。
进程的用户和组标识符
每个进程都有一组与之相关的用户ID(UID)和组ID(GID),如下所示
真实用户ID和组ID:用来标识进程所属的用户和组。新进程从其父进程处继承这些ID。登录shell则会从系统密码文件的相应字段中获取其真实用户的ID和组ID。
有效用户ID和组ID:进程在访问受保护资源(比如,文件和进程间通信对象)时,会使用这两个ID来确定访问权限。一般情况下,进程的有效ID与相应的真实ID值相同。
补充组ID:用来标识进程所属的额外组。新进程从其父进程处继承补充组ID。登录shell则从系统组文件中获取其补充组ID。
能力(Capabilities)
始于内核2.2,Linux把传统上赋予超级用户的权限划分为一组相互独立的单元(称之为”能力“)。每次特权操作都与特定的能力相关,仅当进程具有特定能力时,才能执行相应操作。传统意义上的超级用户进程(有效用户ID为0),则相应开启了所有能力。
赋予某进程部分能力,使得其既能够执行某些特权操作,又防止其执行其它特权级操作。
init进程
系统引导时,内核会创建一个名为init的特殊进程,即”所有进程之父",该进程的相应程序文件为/sbin/init。系统的所有进程不是由init(使用fork())"亲自创建,就是由其后代进程创建。init进程的进程号永远为1,且总是以超级用户权限运行。谁都不能"杀死"init进程,只有关闭系统才能终止该进程。init的主要任务是创建并监控系统运行所需的的一系列进程。
守护进程
守护进程指的是具有特殊用途的进程,系统创建和处理此类进程的方式与其他进程相同,但以下特征是其所独有的:
“长生不老”。守护进程通常在系统引导时启动,直至系统关闭前,会一直“健在”。
守护进程在后台运行,且无控制终端供其读取或写入数据。
环境列表