HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。是根据google发表的论文翻版的。论文为GFS(Google File System)Google 文件系统。
HDFS有很多特点:
① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。
② 运行在廉价的机器上。(商用机)
③ 适合大数据的处理。多大?多小?HDFS默认会将文件分割成block,64M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中。如果小文件太多,那内存的负担会很重。
如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。
NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;
SecondaryNameNode:是一个小弟,分担大哥namenode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。
DataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。
热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。
冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。
fsimage:元数据镜像文件(文件系统的目录树。)
edits:元数据的操作日志(针对文件系统做的修改操作记录)
namenode内存中存储的是=fsimage+edits。
SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。所以讲secondarynamenode,单独放置到一台机器上,可以增大冗余,但是有可能会丢失一小时内处理的数据。
工作原理
写操作:
有一个文件FileA,100M大小。Client将FileA写入到HDFS上。
HDFS按默认配置。
HDFS分布在三个机架上Rack1,Rack2,Rack3。
a. Client将FileA按64M分块。分成两块,block1和Block2;
b. Client向nameNode发送写数据请求,如图蓝色虚线①——>。
c. NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②———>。
Block1: host2,host1,host3
Block2: host7,host8,host4
原理:
NameNode具有RackAware机架感知功能,这个可以配置。
若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。
若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。
d. client向DataNode发送block1;发送过程是以流式写入。
流式写入过程,
1>将64M的block1按64k的package划分;
2>然后将第一个package发送给host2;
3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;
4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。
5>以此类推,如图红线实线所示,直到将block1发送完毕。