为什么说“概率”带来一场现代革命?


概率是生活中平常不过的概念。我们用概率来量化某种结果的可能性。日常生活中常见到概率。成功有概率,体育比赛的胜负有概率,彩票中奖也有概率。概率就是“概率论”这门学科研究的核心。不过,像概率这样“日常”的概念,是在16世纪文艺复兴时才成为数学家研究的课题。

 

最先研究概率论的是一位名为卡尔达诺的数学家。他研究了一个概率问题:

扔两个色子,总和为10的概率有多大?

 

扔色子这个游戏,大家常玩。色子是一个方块,六个面各有一个数字,从1到6。扔出去一个色子,那么出现六个面中任意一个面的概率相同,因此每种结果的概率就是1/6。

 

扔两个色子算总数时,总数概率就不一样了。直觉上来说,总数为2的概率会很小。只有两个骰子都为1这一种结果时,总数才能为2。我们把这样的两个色子的结果记成(1,1)。总数为10的概率要高一些,包括了(5,5)、(4,6)、(6、4)三种结果。在桌游《卡坦岛》中,每块儿土地有一个从2到12的数字。玩家通过扔两个色子决定那块儿土地产出资源。从下图看到,7号包含的结合总数,比2号大得多。在总共36种结果中,总数7对应了6种结果,概率是6/36,大约是16.7%。总数2只对应了1种结果,所以概率就是1/36,大约为2.8%。

为什么说“概率”带来一场现代革命?


卡坦岛的结果

 

我们看到,两个色子的概率问题解决起来很容易,根本不需要高深的数学知识。但这个问题直到16世纪才被卡尔达诺搞明白。当时正值 “文艺复兴”的时代。卡尔达诺的父亲,就是“文艺复兴”最著名画家达·芬奇的朋友。欧洲掌握了火药和印刷术,即将走入现代。放眼世界,哥伦布已经发现了美洲。中国进入到倒数第二个封建王朝:大明。日本已经结束了战国,进入最后一个幕府时代,也就是江户幕府。经过两千年的发展,数学家已经发明了非常复杂的数学工具:欧氏几何、代数方程、三角函数。诡异的是,看起来简单的概率论,到了这么晚的时间才诞生。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpdwgz.html