2 行(列)选取:df[]
3 区域选取:df.loc[]、df.iloc、df.ix[]
3.1 df.loc[]
3.2 df.iloc[]
3.3 df.ix[]
4 单元格选取:df.at[]、df.iat
4.1 df.at[]
4.2 df.iat[]
5 总结
1 引言Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。
Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍。
在Dataframe中选取数据大抵包括3中情况:
1)行(列)选取(单维度选取):df[]。这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件)。
2)区域选取(多维选取):df.loc[],df.iloc[],df.ix[]。这种方式可以同时为多个维度设置筛选条件。
3)单元格选取(点选取):df.at[],df.iat[]。准确定位一个单元格。
接下来,我们以下面的数据为例,分别通过实例介绍这三种情况。
>>> import pandas as pd >>> import numpy as np >>> data = {'name': ['Joe', 'Mike', 'Jack', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jason', 'Even'], 'age': [25, 32, 18, np.nan, 15, 20, 41, np.nan, 37, 32], 'gender': [1, 0, 1, 1, 0, 1, 0, 0, 1, 0], 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']} >>> labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] >>> df = pd.DataFrame(data, index=labels) >>> df name age gender isMarried a Joe 25.0 1 yes b Mike 32.0 0 yes c Jack 18.0 1 no d Rose NaN 1 yes e David 15.0 0 no f Marry 20.0 1 no g Wansi 41.0 0 no h Sidy NaN 0 yes i Jason 37.0 1 no j Even 32.0 0 no