Kmeans算法(K均值算法)
KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
如何定义两个样本的相似:两个样本在欧式空间中的距离
引入新概念:Cluster: 表示一个簇
centroid: 表示当前簇的中心
1.随机从数据集中选取k个样本当做centroid
2.对于数据集中的每个点,计算它距离每个centroid的距离,并把它归为距离最近打那个cluster
3.更新新的centroid位置
4.重复2和2,直到centroid的位置不再改变