中台将前台业务中相对稳定的能力固化和沉淀下来,并共享给有需要的其他业务方使用,从而实现快速响应业务需求、降低成本和支持业务方进行规模化创新。
记者:以您的经验来看,什么样的企业需要建设数据或者AI中台?或者说企业在什么时候应该要建设中台,是否有什么明显的信号?比如说企业到了什么样的阶段或者遇到什么样的问题。
王东:企业启动自己的数据中台和AI中台建设,是与企业当时的业务发展阶段相关的。
很多企业在早期业务发展过程中,为了解决一些当时的业务问题,快速上线了很多功能,要么垂直的、个性化的业务逻辑与基础系统耦合太深,横向系统之间、上下游系统之间交叉逻辑错综复杂。要么缺乏统一规划,建设了许多高度相似的系统,大量重复建设,但又不通用,用户体验不统一。 这样导致在新业务、新市场的拓展过程中,系统没法直接复用,甚至没法快速迭代。
我们称为 “重复造轮子”和“烟囱式架构”,本质上是企业在早期高速发展过程当中,为了快速解决当时的业务问题,而欠下了许多技术债务。这些历史技术债务积重难返,当企业进入成熟期之后,发现这些问题的存在,严重影响了企业的运行效率和运营成本。大多数提出中台战略或是建设大中台的企业,都面临过类似的困境。
中台化建设作为一种产品设计思想或者系统架构思想,对于任何一家即将或者正在面临业务高速增长的企业来说,都值得借鉴,对目前业务当中大量可复用的功能和场景进行梳理,为业务的高速增长做好准备,同时也起到了降本增效的目的。
这个过程很像是在飞行过程中修发动机。一方面,知道飞机发动机已经存在一些问题,需要修理; 另外一方面,还在飞行过程中,飞机还要飞,还要支持业务发展,不可能将发动机停了。这个过程是有一定难度,还要抢时间,为下一次业务发展做好准备。
通过机制化、产品化等方式,将企业内部具有通用性的数据、功能、产品进行统一规划和开发,从而更好地帮助前台业务部门更多地关注业务,提高业务运营效率,进而提升企业竞争力,是企业中台化建设的目标。
记者:前面您也讲到,智能聊天机器人平台的研发要基于数据中台所提供的数据挖掘和处理能力,可以说AI产品的研发和应用离不开大数据技术的支撑。那您认为大数据技术与AI应用落地之间是一种什么样的关系?
王东:纵观这次人工智能的浪潮,可以说是算法、大数据等技术和硬件多方面的因素促成的。一方面算法层面有了进一步突破,更重要的是大数据相关技术的成熟,使得数据的获取变得容易,大数据计算变得可能,以前许多不可能完成的事情,现在可以通过大数据的算力来进行学习和训练。再结合现在GPU、AI芯片以及传感器等硬件技术,使得需要大规模计算的深度学习训练可以完成,这些都直接导致了AI应用的快速落地和到处开花。
以互联网AI应用为例,互联网巨头是使用大数据标注并落地AI应用的最早受益者。AI应用最早应用在搜索引擎(Google、百度)、广告系统(Ebay)、电子商务网站(阿里)等,它们都是大数据的产生方和使用方,然后是在拥有大数据流的社交平台(Facebook,腾讯),到现在使用大数据技术在垂直细分领域做个性化推荐平台(头条、快手)。一方面大家在使用这些互联网平台,另外一方面大家也在进行免费的大数据标注。
以商业AI应用为例,商业机构通过激活已有的大数据,并结合AI算法创造商业价值。医疗机构通过已有病历实现疾病诊断/鉴别、个性化治疗/行为矫正、临床决策支持系统、流行病爆发预测等, 金融机构通过已有交易数据,进行大数据风控、个性化营销、智能投顾、智能投研等。这些都是大数据与AI紧密结合的产物。
以实体世界AI应用为例,通过获取实体世界的数据,实现智能化,带来新的应用、新的商机。通过大数据、AI与汽车行业结合,诞生了自动驾驶、路径规划、实时路况、危险预警等应用;大数据与商业零售结合,收集海量顾客信息,结合AI技术,用于精准营销、店铺选址、库存规划、个性化服务等。大数据、AI技术与智慧城市、智能安监、环境治理、教育等诸多领域结合后,都带来了大量新的应用和商业机会。
因此,无论是传统的数据挖掘、还是机器学习、深度学习,所有的模型都离不开大量的数据,可以说大数据技术是AI应用的养料和土壤,大数据技术催生了AI应用的落地。