前言:宜信技术人物专访是宜信技术学院推出的系列性专题,我们邀请软件研发行业的优秀技术人,分享自己在软件研发领域的实践经验和前瞻性观点。
第一期专访我们邀请到宜信科技中心AI中台负责人王东老师,从大数据和AI赋能金融业务的角度,分享了中台、大数据、AI等软件研发趋势为业务赋能的经验与思路。
王东老师从技术视角到业务视角,在中台的落地契机、AI与大数据关系、AI和大数据技术的落地等方面提出了自己的看法。
记者:很多人将金融行业的发展划分为三个阶段:信息金融时代,主要指银行卡的出现,银行开始做集中的数据管理;互联网金融时代,互联网的发展,使得用户可以通过PC和APP办理金融业务,这一阶段金融机构通过数据平台管理和使用数据;智慧金融时代,也就是现在,金融机构通过大数据和AI技术让金融服务智能化。
作为有多年金融行业经验的大数据专家,您认为在这3个阶段里,数据为金融服务赋能的方式出现了哪些变化?分别有哪些典型的产品化表现?
王东:按照DIKW体系, 这三个阶段对应的是数据电子化、数据信息化、数据知识化和数据智能化的过程。
信息金融时代,金融机构都在进行金融基础设施建设,数据被集中化管理,金融机构从手工劳动和纸质单据中解放出来,提高效率,本质上这是电子化、信息化的一个过程,金融机构的数据进行结构化和梳理,并被分析和使用。这个阶段数据仓库和数据集市的理论体系诞生并得到完善,基于数仓理论体系的软件工具发布,数据的BI分析(使用ETL、建立数据仓库、OLAP分析和可视化报表)在金融机构中最先开始落地并产生价值,基于数据的早期信用卡风控模型开始建立并投入使用。
互联网金融时代,是数据爆炸的时代,云计算和大数据技术兴起,金融机构面临业务变化快、大数据量、高并发量等各种不同需求的冲击,前端业务系统进行大规模改造以适应大数据的冲击。数据层面上,企业的数据量已经变得非常庞大,业务变化也非常快,传统的报表迭代速度慢,需要排期,无法满足金融机构的数据分析需求。大数据理论和大数据分布式平台蓬勃发展,基于大数据平台的相关技术让敏捷式报表的概念逐渐成为可能,数据实时化、自助化深入人心。BI的流程已经大幅缩短,在金融机构的决策中被广泛使用。大数据技术、机器学习等技术在金融领域的引用,催生了大数据风控技术、反欺诈分析、精准营销和个性化推荐、销售渠道优化&产品服务优化、舆情分析等智能应用。
智慧金融时代,是数据知识化和智能化的高级阶段,大数据和AI能力重塑和改造金融服务,创造业务,降低成本,提高效率。金融机构业务部门的数据分析需求进一步增加,商业智能分析产品被业务专家广泛使用在辅助分析、协助决策、智能助理等各个领域。BI分析更加自动化,增强型分析(是数据准备和洞察过程自动化、使用自然语言或语音交互、根据AI分析给出决策建议、利用机器学习和AI管理数据)逐步成为可能。基于大数据和AI提供的各项能力,客服机器人、外呼机器人、智能投顾、智能投研、客户流失预测、绩优销售预测、千人千面的金融产品等变为现实。
记者:智慧金融时代,AI技术在金融服务的落地场景也越来越多。您能否以宜信的某一个AI产品为例,简单介绍AI在金融服务业务场景中的落地实践。
王东:这里,我就介绍一下我们智能聊天机器人平台吧。该平台是结合自然语言处理、搜索引擎、会话领域场景的一站式人机对话解决方案,只需简单导入自己的业务问答数据知识,系统的智能模型就会快速学习并生成相应的机器人,创建出定制化的业务咨询专家。
智能聊天机器人平台包含QA聊天机器人、任务机器人、闲聊机器人、人工后台、文档管理、模型管理、会话管理、统计报表等诸多功能。平台支持多租户,对算力、数据和资源进行隔离。对接公司LDAP、SMP、SSO等认证系统,支持功能角色和数据角色,对业务系统无侵入,可以内嵌到公司PC端业务系统中或手机APP中。
以CSC场景为例:CSC的一线同事在日常工作中,每天都会产生大量业务问题需要咨询。此前这些问题通过蜜蜂等IM软件在工作群内进行询问,由CSC客服管理部相关同事支持。但由于问题数量大、涉及业务线多,这些业务咨询往往不能得到迅速解决,影响业务的顺利开展。另一方面,通过人工进行业务问题支持的工作还存在着响应缓慢、效率不高、成本高昂等问题。最终从客户角度来看,业务问题的无法解决或解决流程不规范,将严重影响客户体验和品牌认知。