凹凸技术揭秘·羚珑智能设计平台·逐梦设计数智化 (2)

视频设计

羚珑提供的动图设计、视频设计能力,与图片设计一样,在京东内部系统平台也得到广泛的集成应用。

2.4设计工具箱,为你打磨实用的图片后期处理利器

想对已有图片做后期加工处理么?来看看羚珑的设计工具箱吧。

设计工具箱

一键智能抠图 -在线抠图,不用PS也能获得透底图

商品打腰带-商品图批量打腰带,省时不费力

图片批量编辑-批量裁剪、修改尺寸和压缩转格式

....

2.5 企业专区,让每一个企业拥有完整的在线设计解决方案

面向企事业单位提供设计数智化赋能的 SAAS 服务,提供了包括素材在线管理、标准化合图、快速页面搭建、自定义组件编辑在内的一整套解决方案,让企业无须投入开发成本,即可在日常运营的固定位置更新以及组织促销活动等场景中,规范化、流程化、标准化地进行设计输出。

图片

羚珑企业客户 - 乐信(https://www.lexin.com/)

3、程序化设计

「程序化设计」的核心目标是利用大数据挖掘、人工智能等技术手段,结合用户的设计画像,为不同的人群输出不同风格的设计手法,助力千人千面等精准营销场景,提升转化率,所用到的技术主要包括数据挖掘、计算机视觉、机器学习。

「程序化设计」最大的特点是「极速」和「无人运营」,适用于需要海量快速生成图片的业务场景。在京东的一个典型应用场景是京东 APP 首页焦点图的千人千面,其针对不同用户结合用户画像生成不同的设计结果,每天处理数以亿计的图片生成请求,这些依赖人工运营是根本无法达成的。

基于「程序化设计」相关技术能力的应用,我们达成了设计大幅度降本提效的基本目标,以往设计师可能半天才能做好 1 张广告图,现在 1 台机器的 1 个进程,每秒就能做好几张图,大大节约了设计成本。

除了降本提效,设计结果商业效果的提升也是「程序化设计」十分重要的目标。

我们已经开始在广告图片商业价值层面进行探索和论证:根据不同用户的画像、设计偏好,生成不同风格的广告图片,从而进一步提高广告图片的商业点击率(CTR)。这种依据用户画像、设计偏好进行程序化设计的新模式,我们称其为推荐型设计。

智能推荐型设计是一个复杂的系统工程,可以拆解成若干个图片智能化相关的技术课题,接下来为大家稍作介绍。

3.1 设计画像 3.1.1缘起

在推荐搜索模型构建中,我们会为用户构造大量的标签,比如像年龄、性别、城市、品牌偏好、品类偏好等,这些标签最后勾勒出一个用户的形象,我们把它定义为机器识别的数据化形象,行业内的叫法是用户画像。

借鉴于用户画像,我们开始思考用户在图片视觉领域是否存在类似的偏好,更通俗讲人的审美是否会因为每个人而不一样?

3.1.2论证

关于用户设计审美偏好的答案,有一篇文章( 《浙大女教授扎心发现:可乐包装上的字体可能正在算计你的钱包》)的结论让我们印象深刻:使用圆润可爱的字体会更能让用户对可乐产生喜爱的情感,进而让用户产生消费!

这篇文章告诉我们,除了内容,设计本身似乎也能影响商业转化率,我们决定在京东实际的业务场景使用一系列的AB测试实验,依靠数据来进一步佐证它的结论。

实验一:不同字体曲率对CTR影响研究

场景:APP的核心入口首页banner图上

图片

通过监测数据我们得到一些结论:

儿童品类或女性偏好度较高的品类可以考虑通过圆润属性的字体来提升用户对商品的喜爱程度;

品牌认知度较弱的品类可以考虑用过圆润属性的字体来提升用户的喜爱程度;

针对女性用户/25岁以下的年轻用户进行营销时,可以更多考虑通过圆润属性的字体来提升用户对商品的喜爱程度。

不同年龄的男性女性对于字体的偏好也不太一样

实验二:不同色系对CTR影响研究

场景:APP/PC的核心入口首页banner图上

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpjsww.html