凹凸技术揭秘·羚珑智能设计平台·逐梦设计数智化 (5)

基于图像智能识别技术,对图像色值进行精准识别,通过像素级别的色值替换,实现图片色彩风格的智能变换,保证配色结果的风格与质量。

3.4 智能抠图

智能抠图基于京东drawbot和 么么照 的能力进行构建,前者擅长商品抠图,后者适合人像抠图。目前这两种抠图能力都可以在羚珑平台上体验,另外也提供接口方式内外赋能。

图片

3.5 智能排版

基于知识图谱的推理能力,我们构建了一套适用于泛零售领域的广告图片排版技术,通过知识图谱可以让图形在任意尺寸下自动适应画布,并添加合适的图元。

3.5.1任意尺寸Banner图合成

我们建立了一套基于知识推理的方法,从简单到复杂的递推迁移实现了banner图任意版式结构的构图,利用机器学习算法学习大量的优秀设计师模板中的布局参数,智能化的构建出符合人眼审美的排版构图,使用模型的泛化能力实现了任意尺寸的版式合图能力。

图片

3.5.2任意形状图形排列

为了增加素材的丰富性与层次感,我们对一些基本图形或文字进行叠加组合,生成复合型的素材,使用场卷积堆叠算法,对图元生成卷积核在目标区域内卷积扫描,填充并目标轮廓区域,实现了任意形状轮廓的图元排列与叠加效果。

图片

图片

3.6智能背景

尺寸拓展是设计需求中经常碰到的一个痛点,一张广告图片,经常因为要下发到不同的客户端,需要做不同尺寸的版本。这个过程我们会碰到一个很大的问题,静态的背景图片没有办法很好的适应于各种尺寸中,它不像矢量素材一样,可以任意的放大或缩小,而矢量背景素材却又具有很大的设计成本。因此,我们希望可以利用程序算法动态生成任意尺寸的好看好用的背景图素材,它具有矢量背景素材的特性,又具有极低的生产成本,这是羚珑智能背景课题研究的初衷,是实现 AI 无人化设计的难题之一,我们现在就在路上。

利用机器生成的背景,在创意层面会有一定的局限性。我们觉得以下几种类型的抽象背景素材具有机器生成的可行性。

3.6.1粒子 + 渐变

将大量的粒子和深色的渐变相叠加, 可以生成类似科幻大片中的背景效果图, 非常适合用作电子产品的背景图。通过对粒子大小, 色彩混合模式, 随机性等参数的修改, 可以生成更多特殊氛围效果。

图片

3.6.2形状组合

纯形状组合的背景具有很强的通用性, 可用于各种品类的商品, 它是由算法生成一些随机形状组成, 并根据用户喜好风格匹配一套配色方案对图形进行着色。

图片

3.6.3渐变+装饰

用装饰图形和渐变背景色融合也是常用的背景生成方案, 通过对装饰图形类型、层数、融合模式、位置等参数修改, 使得这类背景图生成方案通用性极强, 可以演化出千变万化的背景素材。

图片

3.7 风格识别

我们基于深度学习,构建了风格识别的预测模型,可以从图片信息识别出风格特征元素,自动判别图片设计风格。风格识别的技术,能够在类似京东 APP 首焦广告图千人千面等精准化营销场景中得到应用落地。

图片

3.8智能识色

一款颜色提取工具,通过提取图片像素点的 RGB 值,再做一个归类排序,最后通过算法由 RGB 转化为普通人可理解的颜色(红、蓝、黄、绿等)。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpjsww.html