张军:最大的困难来自于是否能够得到业务部门的认可。更深刻地理解业务,并与业务团队持续沟通,明确新的技术产品和项目能够解决业务团队的哪些痛点,是克服困难的关键。
记者:在金融科技行业,当前阶段的技术创新是由技术发展驱动还是由业务发展驱动?您如何看待技术创新与业务发展之间的关系?
张军:对于宜信这样一家从事金融服务的公司,技术上的最终目标一定是我们所从事的金融服务业务目标的达成。
所以对于自己所负责的技术团队来说,不是单纯地为了技术而做技术,而应该是更好地理解公司业务、流程、客户,与业务团队一起,通过技术来达成公司在业务上的目标。
技术创新不是凭空出现的,技术创新一定是为了满足业务的发展,解决业务的痛点。
记者:最后想聊一个稍微有些宽泛的问题,AI和大数据技术的发展已相对成熟,在宜信也已经有了很广泛的落地应用,从金融科技行业来看,数据智能应用重点解决了哪些方面的业务问题?在业务场景中有哪些是当前不能通过技术解决而必须依赖于人来解决的问题?数据智能未来的发展方向是什么?
张军:AI和大数据技术在宜信已经有了非常广泛和深入的落地应用,例如,我们使用替代型的数据,用人工智能算法来评估客户的信用,并检测欺诈风险;将AI技术应用在跟客户交互的环节,实现与客户交互的自动化和标准化;使用AI算法来给客户做KYC,从而能更好地理解客户需求,给客户提供适合的金融服务;还大量使用大数据技术来形成对所服务客群的深刻洞察。
随着未来数据量的进一步积累和算力的进一步提升,大数据和AI算法将会在金融行业有更多更广泛的应用,不仅能够用来解决数据化、自动化的问题,也能够替代一些简单重复的脑力活动,在信用审核、保险承保、客户交互等等核心关键业务场景都能得到应用,提升金融服务的效率和金融资产的质量。
但是,在复杂的脑力劳动,比如在给客户提供有温情的服务上,在给客户面对面提供财富管理建议时,机器都还很难替代人。