如何自学人工智能?

                      欢迎关注作者:大数据教程,AI教程、学习资源、论文解读,你想看的都在这里!

最近不少同学跃跃欲试,想投入 AI 的怀抱,但苦于不知如何下手。其中,人工智能的核心就是机器学习(Machine Learning),它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。

我们今天就来分享一篇来自 EliteDataScience 上专门讲给机器学习入门自学者的教程,一步步教你如何从基础小白进阶为 ML 大拿。快上车吧,别找硬币了,这趟车不要钱!

 

如何自学人工智能?

 

你是否正在准备自学机器学习,但又不知道怎么去学?

今天我们在这篇文章里就教你怎样免费获得世界级的机器学习教育,你既不需要有博士学位,也不必是技术大牛。不管你是想成为数据科学家还是在开发中使用机器学习算法,其实你都能比想象中更快地学习和应用机器学习。

本文告诉你在机器学习之路上的几个步骤,保你不会迷路,下面开始我们的表演。

第一步:先搞懂什么是机器学习

在闷头学习机器学习之前,最好先把什么是机器学习搞清楚,了解机器学习的基本概念。

简单来说,机器学习就是教电脑怎样从数据中学习,然后做出决策或预测。对于真正的机器学习来说,电脑必须在没有明确编程的情况下能够学习识别模型。

机器学习属于计算机科学与统计学的交叉学科,在多个领域会以不同的面目出现,比如你应该听过这些名词:数据科学、大数据、人工智能、预测型分析、计算机统计、数据挖掘······

虽然机器学习和这些领域有很多重叠的地方,但也不能将它们混淆。例如,机器学习是数据科学中的一种工具,也能用于处理大数据。

机器学习自身也分为多个类型,比如监督式学习、非监督式学习、增强学习等等。例如:

邮件运营商将垃圾广告信息分类至垃圾箱,应用的是机器学习中的监督式学习;电商公司通过分析消费数据将消费者进行分类,应用的是机器学习中的非监督式学习;而无人驾驶汽车中的电脑合摄像头与道路及其它车辆交互、学习如何导航,就是用到了增强学习。

想了解机器学习的入门知识,可以看看一些网络课程。对于想对机器学习领域的重点慨念有个基础的了解的人来说,吴恩达教授的机器学习入门课程绝对必看

以及“无人车之父” Sebastian Thrun 的《机器学习入门》课程,对机器学习进行了详细介绍,并辅以大量的编程操作帮助你巩固所学内容

当然也少不了集智君整理制作的免费专栏,在这里你可以免去安装环境的烦恼,直接投入简单地机器学习训练中来:

边看边练的机器学习简明教程

这些课程都是免费的哦!

大概了解机器学习后,我们就来到知识准备阶段了。

第二步:预备知识

如果没有基本的知识储备,机器学习的确看起来很吓人。要学习机器学习,你不必是专业的数学人才,或者程序员大牛,但你确实需要掌握这些方面的核心技能。

好消息是,一旦完成预备知识,剩下的部分就相当容易啦。实际上,机器学习基本就是将统计学和计算机科学中的概念应用在数据上。

这一步的基本任务就是保证自己在编程和统计学知识上别掉队。

2-1:用于数据科学中的Python编程

如果不懂编程,是没法使用机器学习的。幸好,这里有份免费教程,教你如何学习应用于数据科学中的Python语言

2-2:用于数据科学的统计学知识

了解统计学知识,特别是贝叶斯概率,对于许多机器学习算法来说都是基本的要求。 这里有份学习数据学习中统计学知识的教程

2-3:需要学习的数学知识

研究机器学习算法需要一定的线性代数和多元微积分知识作为基础。点这里,获取一份免费学习教程

第三步:开启“海绵模式”,学习尽可能多的原理知识

所谓“海绵模式”,就是像海绵吸水一样,尽可能多地吸收机器学习的原理和知识,这一步和第一步有些相似,但不同的是,第一步是对机器学习有个初步了解,而这一步是要掌握相关原理知识。

可能有些同学会想:我又不想做基础研究,干嘛要掌握这些原理,只要会用机器学习工具包不就行了吗?

有这个疑问也很正常,但是对于任何想将机器学习应用在工作中的人来说,学习机器学习的基础知识非常重要。比如你在应用机器学习中可能会遇到这些问题:

数据收集是个非常耗时耗力的过程。你需要考虑:我需要收集什么类型的数据?我需要多少数据?等此类的问题

数据假设和预处理。不同的算法需要对输入数据进行不同的假设。我该怎样预处理我的数据?我的模型对缺失的数据可靠吗?

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wppwzs.html