12张图带你彻底理解分布式事务!!

写这篇文章的背景是有个跟我关系不错的小伙伴去某大型互联网公司面试,面试官问了他关于分布式事务的问题,不巧的是他确实对分布式事务掌握的不是很深入,面试的结果挺遗憾的。不过,这位小伙伴还是挺乐观的,让我写写关于【分布式事务】的系列文章,他想提升自己关于分布式事务的短板,那我就写一个【分布式事务】专题吧,专题的内容计划是从原理、框架源码到企业级实现,这篇文章也算是整个专题的开篇吧。希望能够为小伙伴们带来实质性的帮助。

本地事务 本地事务流程

在介绍分布式事务之前,我们先来看看本地事务。首先,我们先来一张图。

12张图带你彻底理解分布式事务!!

由上图,我们可以看出,本地事务由资源管理器(比如DBMS,数据库管理系统)在本地进行管理。

本地事务的优缺点

本地事务具备相应的优点,也有其不足。

优点:

支持严格的ACID属性。

可靠,事务实现的效率高(只是在本地操作)。

可以只在RM(资源管理器)中操作事务。

编程模型简单。

缺点:

缺乏分布式事务的处理能力。

数据隔离的最小单元由RM(资源管理器决定),开发人员无法决定数据隔离的最小单元。比如:数据库中的一条记录等。

ACID属性

说起事务,我们不得不提的就是事务的ACID属性。

12张图带你彻底理解分布式事务!!

A(Atomic):原子性,构成事务的所有操作,要么都执行完成,要么全部不执行,不可能出现部分成功部分失
败的情况。

C(Consistency):一致性,在事务执行前后,数据库的一致性约束没有被破坏。比如:张三向李四转100元,
转账前和转账后的数据的正确状态叫作一致性,如果出现张三转出100元,李四账户没有增加100元这就出现了数
据错误,就没有达到一致性。

I(Isolation):隔离性,数据库中的事务一般都是并发的,隔离性是指并发的两个事务的执行互不干扰,一个事
务不能看到其他事务运行过程的中间状态。通过配置事务隔离级别可以避脏读、重复读等问题。

D(Durability):持久性,事务完成之后,该事务对数据的更改会被持久化到数据库,且不会被回滚。

分布式事务

随着业务的快速发展,网站系统往往由单体架构逐渐演变为分布式、微服务架构,而对于数据库则由单机数据库架构向分布式数据库架构转变。此时,我们会将一个大的应用系统拆分为多个可以独立部署的应用服务,需要各个服务之间进行远程协作才能完成事务操作。

我们可以使用下图来表示刚开始我们系统的单体架构。

12张图带你彻底理解分布式事务!!

上图中,我们将同一个项目中的不同模块组织成不同的包来进行管理,所有的程序代码仍然是放在同一个项目中。

后续由于业务的发展,我们将其扩展为分布式、微服务架构。此时,我们将一个大的项目拆分为一个个小的可以独立部署的微服务,每个微服务都有自己的数据库,如下所示。

12张图带你彻底理解分布式事务!!

又比如,在我们的程序中,经常会在同一个事务中执行类似如下的代码来完成我们的需求。

@Transactional(rollbackFor = Exception.class) public void submitOrder() { orderDao.update(); // 更新订单信息 accountService.update(); // 修改资金账户的金额 pointService.update(); // 修改积分 accountingService.insert(); // 插入交易流水 merchantNotifyService.notify(); // 通知支付结果 }

上述代码中的业务,仅仅在submitOrder()方法上添加了一个@Transactional注解,这能够在分布式场景下避免分布式事务的问题吗?很显然是不行的。

如果上述代码所对应的:订单信息、资金账户信息、积分信息、交易流水等信息分别存储在不同的数据里,而支付完成后,通知的目标系统的数据同样是存储在不同的数据库中。此时就会产生分布式事务问题。

分布式事务产生的场景 跨JVM进程

当我们将单体项目拆分为分布式、微服务项目之后,各个服务之间通过远程REST或者RPC调用来协同完成业务操作。典型的场景就是:商城系统中的订单微服务和库存微服务,用户在下单时会访问订单微服务,订单微服务在生成订单记录时,会调用库存微服务来扣减库存。各个微服务是部署在不同的JVM进程中的,此时,就会产生因跨JVM进程而导致的分布式事务问题。

12张图带你彻底理解分布式事务!!

跨数据库实例

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwpwy.html