告别动态规划,连刷 40 道题,我总结了这些套路,看不懂你打我(万字长文) (3)

三个步骤都写出来了,直接看代码

public static int uniquePaths(int m, int n) { if (m <= 0 || n <= 0) { return 0; } int[][] dp = new int[m][n]; // // 初始化 for(int i = 0; i < m; i++){ dp[i][0] = 1; } for(int i = 0; i < n; i++){ dp[0][i] = 1; } // 推导出 dp[m-1][n-1] for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } return dp[m-1][n-1]; }

O(n*m) 的空间复杂度可以优化成 O(min(n, m)) 的空间复杂度的,不过这里先不讲

案例三、二维数组 DP

写到这里,有点累了,,但还是得写下去,所以看的小伙伴,你们可得继续看呀。下面这道题也不难,比上面的难一丢丢,不过也是非常类似

问题描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

举例: 输入: arr = [ [1,3,1], [1,5,1], [4,2,1] ] 输出: 7 解释: 因为路径 1→3→1→1→1 的总和最小。

和上面的差不多,不过是算最优路径和,这是 leetcode 的第64题:https://leetcode-cn.com/problems/minimum-path-sum/

还是老样子,可能有些人都看烦了,哈哈,但我还是要按照步骤来写,让那些不大懂的加深理解。有人可能觉得,这些题太简单了吧,别慌,小白先入门,这些属于 medium 级别的,后面在给几道 hard 级别的。

步骤一、定义数组元素的含义

由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当机器人从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。

注意,这个网格相当于一个二维数组,数组是从下标为 0 开始算起的,所以 由下角的位置是 (m-1, n - 1),所以 dp[m-1] [n-1] 就是我们要走的答案。

步骤二:找出关系数组元素间的关系式

想象以下,机器人要怎么样才能到达 (i, j) 这个位置?由于机器人可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有

dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格种的值 步骤三、找出初始值

显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于计算机图中的最上面一行和左边一列。因此初始值如下:

dp[0] [j] = arr[0] [j] + dp[0] [j-1]; // 相当于最上面一行,机器人只能一直往左走

dp[i] [0] = arr[i] [0] + dp[i] [0]; // 相当于最左面一列,机器人只能一直往下走

代码如下 public static int uniquePaths(int[][] arr) { int m = arr.length; int n = arr[0].length; if (m <= 0 || n <= 0) { return 0; } int[][] dp = new int[m][n]; // // 初始化 dp[0][0] = arr[0][0]; // 初始化最左边的列 for(int i = 1; i < m; i++){ dp[i][0] = dp[i-1][0] + arr[i][0]; } // 初始化最上边的行 for(int i = 1; i < n; i++){ dp[0][i] = dp[0][i-1] + arr[0][i]; } // 推导出 dp[m-1][n-1] for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + arr[i][j]; } } return dp[m-1][n-1]; }

O(n*m) 的空间复杂度可以优化成 O(min(n, m)) 的空间复杂度的,不过这里先不讲

案例 4:编辑距离

这次给的这道题比上面的难一些,在 leetcdoe 的定位是 hard 级别。好像是 leetcode 的第 72 号题。

问题描述

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例: 输入: word1 = "horse", word2 = "ros" 输出: 3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

解答

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwsdd.html