从程序员的角度设计一个Java的神经网络

来自维基百科:

人工神经网络(ANN)或连接系统是受生物神经网络启发构成生物大脑的计算系统。这样的系统通过考虑例子来学习(逐步提高性能)来完成任务,通常没有任务特定的编程。

Java或任何其他编程语言设计神经网络我们需要理解人工神经网络的结构和功能

人工神经网络执行的任务比如有模式识别、从数据中学习以及像专家一样预测趋势,而不像传统的算法方法那样需要执行一组步骤来实现所定义的目标。人工神经网络由于其高度交互的网络结构,可以学习如何自己解决一些任务。

人造神经元具有与人脑神经元相似的结构。一个天然的神经元是由核,树突和轴突组成的。轴突延伸到几个分支形成突触与其他神经元的树突。

到目前为止,我们已经区分了神经元的结构和相连神经元的网络。另一个重要方面是分别与单个神经元相关的神经网络的处理或计算。自然神经元是信号处理器 - 它们在树突中接收可以触发轴突信号的微信号。有一个潜在的阈值,到达的时候,刺激轴突,并传播信号到其他神经元。因此,我们可以将人造神经元视为一个在输入中具有信号接收器、在输出中具有激活单元的东西,其可以发送的信号将被转发到与图中所示类似的其他神经元上:

 

从程序员的角度设计一个Java的神经网络

此外,神经元之间的连接具有相应可以修改信号的权重,从而影响神经元的输出。由于权重是神经网络的内部因素并影响其输出,所以可以认为它们是神经网络的内部学科,调节描述神经元与其他神经元或外部世界的连接的权重将反映神经网络的能力。

正如Bioinfo Publications所述:

人造神经元接收一个或多个输入(代表树突)并将它们相加以产生输出/ 激活 (代表神经元的轴突)。一般来说每个节点的总和被加权,总和通过激活函数或传递函数传递。

这个组件为神经网络处理增加了非线性,这是因为自然神经元具有非线性行为。在一些特殊情况下,它可以是一个线性函数。

维基百科提及到说:

一个标准的计算机芯片电路可以看作是一个激活功能的数字网络,取决于输入的是“ON”(1)还是“OFF”(0)。这与神经网络中的线性感知器的行为类似。然而, 非线性 激活函数允许这样的网络仅使用少量的节点来计算特殊问题。使用的流行的激活函数的例子是Sigmoid、双曲正切、硬极限阈值和纯线性。

将这些知识转化为Java代码,我们将有一个如下的神经元类:

import java.util.ArrayList; import java.util.List; import edu.neuralnet.core.activation.ActivationFunction; import edu.neuralnet.core.input.InputSummingFunction; /** * Represents a neuron model comprised of(以下内容组成的神经元模型): </br> * <ul> * <li>Summing part(求和部分) - input summing function(输入求和函数 )</li> * <li>Activation function(激活函数)</li> * <li>Input connections(输入连接)</li> * <li>Output connections(输出连接)</li> * </ul> */ public class Neuron { /** * Neuron's identifier * 神经元标识符 */ private String id; /** * Collection of neuron's input connections (connections to this neuron) * 神经元输入连接的集合(与此神经元的连接) */ protected List < Connection > inputConnections; /** * Collection of neuron's output connections (connections from this to other * neurons) * 神经元输出连接的集合(从这个到其他神经元的连接) */ protected List < Connection > outputConnections; /** * Input summing function for this neuron * 该神经元的输入和函数 */ protected InputSummingFunction inputSummingFunction; /** * Activation function for this neuron * 这个神经元的激活函数 */ protected ActivationFunction activationFunction; /** * Default constructor * 默认构造方法 */ public Neuron() { this.inputConnections = new ArrayList < > (); this.outputConnections = new ArrayList < > (); } /** * Calculates the neuron's output * 计算神经元输出 */ public double calculateOutput() { double totalInput = inputSummingFunction.getOutput(inputConnections); return activationFunction.getOutput(totalInput); } ... }

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwwzz.html