关闭中断、进入 SVC 模式
ENTRY(stext) THUMB( adr r9, BSYM(1f) ) @ Kernel is always entered in ARM. THUMB( bx r9 ) @ If this is a Thumb-2 kernel, THUMB( .thumb ) @ switch to Thumb now. THUMB(1: ) setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ 关中断、进入 SVC 模式 步骤 2查找指定处理器类型的 proc_info
mrc p15, 0, r9, c0, c0 @ 取出处理器 ID 放入寄存器 r9 中 bl __lookup_processor_type @ 查找处理器类型 r5=procinfo r9=cpuid | |-->/* 找到匹配 proc_info 则返回,否则将 r5 清零 */ | __CPUINIT | __lookup_processor_type: | adr r3, __lookup_processor_type_data | | | |-->.align 2 | | .type __lookup_processor_type_data, %object | | __lookup_processor_type_data: | | .long . | | .long __proc_info_begin | | .long __proc_info_end | | .size __lookup_processor_type_data, . - __lookup_processor_type_data | ldmia r3, {r4 - r6} @ r4=当前数据地址、r5=处理器数据起始地址、r6=结束地址 | sub r3, r3, r4 @ 计算出运行地址和链接地址间的偏移 | add r5, r5, r3 @ 修正 r5 | add r6, r6, r3 @ 修正 r6 | 1: ldmia r5, {r3, r4} | and r4, r4, r9 | teq r3, r4 | beq 2f @ 如果相等则匹配成功 | add r5, r5, #PROC_INFO_SZ @ 开始指向下一个处理器数据 | cmp r5, r6 | blo 1b @ 如果还有数据则循环查找 | mov r5, #0 @ 未找到时将 r5 清零 | 2: mov pc, lr @ 返回 | ENDPROC(__lookup_processor_type) movs r10, r5 @ 使用 r5 改变标志位 THUMB( it eq ) beq __error_p @ 如果相等则没找到 #ifndef CONFIG_XIP_KERNEL adr r3, 2f @ r3=运行地址 ldmia r3, {r4, r8} @ r4=链接地址(虚拟地址)、r8=页偏移 sub r4, r3, r4 @ 运行地址与链接地址间的差值 /* * 内核被解压到 物理地址+text_offset 处,即 0x40008000,也是当前的运行地址 * 而内核在编译时被链接到 page_offset+text_offset 处,即 0xc0008000 * 因此 r4=r3-r4 记录的是内核实际存放的物理地址和运行时的虚拟地址间的偏移 * 即 r4=phys-page_offset * 所以 r8 = r4+r8 = phys-page_offset+page_offset = phys,即物理地址的起始地址 */ add r8, r8, r4 @ 物理地址的起始地址 #else ldr r8, =PHYS_OFFSET @ always constant in this case #endif #ifndef CONFIG_XIP_KERNEL 2: .long . .long PAGE_OFFSET #endif 步骤 3检查 bootloader 传递的启动参数是否有效
/* * r1 = machine no, r2 = atags or dtb, * r8 = phys_offset, r9 = cpuid, r10 = procinfo */ bl __vet_atags | +-->/* Returns: | * r2 either valid atags pointer, valid dtb pointer, or zero | * r5, r6 corrupted | */ | __vet_atags: | tst r2, #0x3 @ 判断 atags 是否 4 字节对齐 | bne 1f | | ldr r5, [r2, #0] | #ifdef CONFIG_OF_FLATTREE @ 配置此项时支持设备树 | ldr r6, =OF_DT_MAGIC @ 判断是否是 DTB 数据 | cmp r5, r6 | beq 2f | #endif | cmp r5, #ATAG_CORE_SIZE @ 判断第一个 atags 参数的大小是否是与 ATAG_CORE 相同 | cmpne r5, #ATAG_CORE_SIZE_EMPTY | bne 1f | ldr r5, [r2, #4] | ldr r6, =ATAG_CORE @ 再判断该参数是不是 ATAG_CORE 节点 | cmp r5, r6 | bne 1f | | 2: mov pc, lr @ 所传递参数合法,正常返回 | | 1: mov r2, #0 | mov pc, lr | ENDPROC(__vet_atags) 步骤 4当前内核镜像在内存中的布局
// 物理内存中的布局 _____________________________________________ | | | | | | | | | | 段描述符 | kernel image | | | | | |______|__________|__________________________| 0x4000_0000 0x4000_8000 // 虚拟内存中的布局 _____________________________________________ | | | | | | | | | | 段描述符 | kernel image | | | | | |______|__________|__________________________| 0xc000_0000 0xc000_8000内核建立内核空间临时的线性映射,采用一级映射,也就是 section 模式,每个section 为 1MB.
#ifdef CONFIG_SMP_ON_UP bl __fixup_smp @ 自旋锁在 SMP 和 UP 上的相关修正 @ arch/arm/include/asm::ALT_SMP #endif #ifdef CONFIG_ARM_PATCH_PHYS_VIRT bl __fixup_pv_table @ 物理地址和虚拟地址间的偏移修正等 @ arch/arm/include/asm::pv_stub #endif bl __create_page_tables | +-->/* r8 = phys_offset, r9 = cpuid, r10 = procinfo | * | * Returns: | * r0, r3, r5-r7 corrupted | * r4 = physical page table address | */ | __create_page_tables: | pgtbl r4, r8 @ 将页表起始物理地址放入 r4 中 | | | +-->.macro pgtbl, rd, phys | | add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE | | .endm | | @ 对页表区域进行清零 | mov r0, r4 | mov r3, #0 | add r6, r0, #PG_DIR_SIZE | 1: str r3, [r0], #4 | str r3, [r0], #4 | str r3, [r0], #4 | str r3, [r0], #4 | teq r0, r6 | bne 1b | | ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags | | @ 创建临时的线性映射 | @ 页表项格式:一级页表入口值[31:20] MMUFLAGS[19:0] | adr r0, __turn_mmu_on_loc | ldmia r0, {r3, r5, r6}@ 得到函数的物理地址 | sub r0, r0, r3 @ virt->phys offset | add r5, r5, r0 @ phys __turn_mmu_on | add r6, r6, r0 @ phys __turn_mmu_on_end | mov r5, r5, lsr #SECTION_SHIFT @ 得到一级页表入口值 | mov r6, r6, lsr #SECTION_SHIFT | | 1: orr r3, r7, r5, lsl #SECTION_SHIFT @ 一级段描述符 | str r3, [r4, r5, lsl #PMD_ORDER] @ 将 r3 中存放的段描述符放入对应的物理地址中 | cmp r5, r6 | addlo r5, r5, #1 @ 下一个段描述符 | blo 1b | | @ 设置映射页表 | mov r3, pc | mov r3, r3, lsr #SECTION_SHIFT @ 得到当前执行程序的段描述符编号 | orr r3, r7, r3, lsl #SECTION_SHIFT @ 合成段描述符 | @ kernel_start=0xc000_8000, section_shift=20, pmd_order=2 | @ 以下两行其实是在计算段描述符的入口地址 | @ 因为要回写到 r0 中,因此拆分来写的 | add r0, r4, #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER) | str r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]! | ldr r6, =(KERNEL_END - 1) @ 内核(包括数据段)的最后一个字节位置 | add r0, r0, #1 << PMD_ORDER @ 下一个段描述符存放的物理地址 | add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER) @ 内核需要的最后一个段描述符存放的物理地址 | 1: cmp r0, r6 | @ 内核对自身进行了线性映射,将自身物理内存所在段直接放入页表中 | add r3, r3, #1 << SECTION_SHIFT @ 下一个段描述符,只需要增加段基址即可 | strls r3, [r0], #1 << PMD_ORDER @ 写入到物理内存对应的页表中 | bls 1b | | @ 将 atags 所在段写到页表中 | mov r0, r2, lsr #SECTION_SHIFT @ atags 段编号 | movs r0, r0, lsl #SECTION_SHIFT @ 如果 r0 为零则赋值为 r8,即没有指定 atags 的情况 | moveq r0, r8 | sub r3, r0, r8 @ 段内偏移量 | add r3, r3, #PAGE_OFFSET @ 转化成虚拟地址 | add r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER) @ 得到该段描述符存放的物理地址 | orr r6, r7, r0 @ 合成段描述 | str r6, [r3] @ 写入物理内存中 | | mov pc, lr | ENDPROC(__create_page_tables) /* * r10 = base of xxx_proc_info structure selected by __lookup_processor_type * On return, the CPU will be ready for the MMU to be turned on, * r0 = CPU control register value. */ /* * 以下代码流程 * 1. 设置v7核心,主要涉及SMP,准备MMU硬件配置,I/D cache,TLB,涉及协处理的配置 * --> arch/arm/mm/proc-v7.S::__v7_setup * 2. 配置MMU,设置内存访问权限,并激活MMU * --> arch/arm/kernel/head.S::__enable_mmu * 3. 将数据段复制到内存中,清理bss段,将processor ID,machine ID,atags 指针保存到指定变量中 * --> arch/arm/kernel/head-common.S::__mmap_switched * 4. __mmap_switched 最后进入C语言函数start_kernel,至此终于走出了汇编代码,进入C语言的天堂 * --> init/main.c::start_kernel */ @ 因为跳转到该函数时,MMU已激活,故这里使用的是虚拟地址,而不是物理地址 ldr r13, =__mmap_switched @ address to jump to after @ mmu has been enabled adr lr, BSYM(1f) @ return (PIC) address mov r8, r4 @ set TTBR1 to swapper_pg_dir ARM( add pc, r10, #PROCINFO_INITFUNC ) THUMB( add r12, r10, #PROCINFO_INITFUNC ) THUMB( mov pc, r12 ) 1: b __enable_mmu 关键宏定义 ::arch/arm/kernel/vmlinux.ld.S . = PAGE_OFFSET + TEXT_OFFSET ::arcm/arm/kernel/head.S /* * swapper_pg_dir is the virtual address of the initial page table. * We place the page tables 16K below KERNEL_RAM_VADDR. Therefore, we must * make sure that KERNEL_RAM_VADDR is correctly set. Currently, we expect * the least significant 16 bits to be 0x8000, but we could probably * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000. */ #define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET) #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000 #error KERNEL_RAM_VADDR must start at 0xXXXX8000 #endif #ifdef CONFIG_ARM_LPAE /* LPAE requires an additional page for the PGD */ #define PG_DIR_SIZE 0x5000 #define PMD_ORDER 3 #else #define PG_DIR_SIZE 0x4000 #define PMD_ORDER 2 #endif .globl swapper_pg_dir .equ swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE .macro pgtbl, rd, phys add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE .endm #ifdef CONFIG_XIP_KERNEL #define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR) #define KERNEL_END _edata_loc #else #define KERNEL_START KERNEL_RAM_VADDR #define KERNEL_END _end #endif