在业务的早期时代,也许使用硬编码或者逻辑判断就可以满足要求。但随着业务的发展,越来越多的问题会暴露出来:
逻辑复杂度带来的编码挑战,需求变更时改变逻辑可能会引起灾难
重复性的需求必须可重用,否则必须重复性编码
运行期间无法即时修改规则,但重新部署可能会带来其他问题
上线前的测试变得繁琐且不可控,必须花大量的人力和时间去测试
这些困境在『 小明历险记:规则引擎 drools 教程一』 一文中可以体会一番,一开始只是简单的根据购物金额来发放积分,运行期间又要更改为更多的规则层次,如果不及时引入对应的规范化处理机制,开发人员将慢慢坠入无止尽的业务深渊。对此,聪明的做法是在系统中引入规则引擎,对业务操作员要提供尽量简单的操作页面来配置规则,规则引擎和配置尽量不要耦合到一块。
1.2 .Net Core 环境下的选择 -- Nrules目前最流行的规则引擎应该是Drools, 用 Java 语言编写的开放源码规则引擎,使用 Rete 算法对所编写的规则求值,其操作流程如下:
对于 .Net 应用来说,可以通过 Kie 组件提供的 Rest 接口调用规则引擎运算。然而其过于庞大,仅仅只是需要规则引擎计算核心的部分。对此,查找了 .Net 中开源的规则引擎,发现只有同样实现 Rete 算法的 Nrules 满足要求(支持 .Net Core,运行时加载规则引擎)。
注:本文参考借鉴了美团技术团队 从 0 到 1:构建强大且易用的规则引擎 一文的设计思路,对 Drools 从入门到放弃。
2. Nrules 实战 -- 电商促销活动规则引擎设计 2.1 了解 NrulesNRules 是基于 Rete 匹配算法的.NET 生产规则引擎,基于.NET Standard ,支持 4.5+ 的应用,提供 流式声明规则、运行时构建规则、专门的规则语言(开发中,不推荐使用到生产,基于.Net 4.5 而不是 .NETStandard )。
其计算机制也与其他规则引擎大同小异:
前文提到 对业务操作员要提供尽量简单的操作页面来配置规则 ,所以我们定义促销活动的规则配置就要尽量简单。
在设计模型时,我们必须先参考现实生活中遇到的电商促销活动,大致可以想到有这么几种活动类型:满减促销、单品促销、套装促销、赠品促销、满赠促销、多买优惠促销、定金促销等。
在这里,我选择对多买优惠促销做分析,多买促销优惠即所谓的阶梯打折,如买一件9折,买两件8折,其模型大致如下:
这里为了简化设计,设计的模型并不会去约束平台、活动范围、会员等级等,仅仅约束了使用的产品 id 范围。为了匹配现实中可能出现的组合优惠(类似满减活动后还可以使用优惠券等)现象和相反的独斥现象(如该商品参与xx活动后不支持X券),设置了一个字段来判断是否可以组合优惠,也可以理解为所有活动都为组合优惠,只是有些组合优惠只有一个促销活动。
注:想了解更多关于电商促销系统设计可参考脑图
2.3 规则配置转换为了实现 规则引擎和配置尽量不要耦合到一块,必须有中间层对规则配置进行转换为 Nrules 能够接受的规则描述。联系前文的计算机制,我们可以得到这样一个描述模型:
public class RuleDefinition { /// <summary> /// 规则的名称 /// </summary> public String Name { get; set; } /// <summary> /// 约束条件 /// </summary> public List<LambdaExpression> Conditions { get; set; } /// <summary> /// 执行行动 /// </summary> public List<LambdaExpression> Actions { get; set; } }