3. 安装 Elasticsearch
4. 安装 Kibana
5. Kibana 使用
6. Elasticsearch 命令
最近在开发分布式服务追踪,使用 Spring Cloud Sleuth Zipkin + Stream + RabbitMQ 中间件,默认使用内存存储数据,但这样应用于生产环境,就不太合适了。
最终我采用的方案:服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana。
这篇文章主要记录 Elasticsearch 和 Kibana 环境的配置,以及采集服务追踪数据的显出处理。
1. ELK Stack 简介ELK 不是一款软件,而是 Elasticsearch、Logstash 和 Kibana 三种软件产品的首字母缩写。这三者都是开源软件,通常配合使用,而且又先后归于 Elastic.co 公司名下,所以被简称为 ELK Stack。根据 Google Trend 的信息显示,ELK Stack 已经成为目前最流行的集中式日志解决方案。
Elasticsearch:分布式搜索和分析引擎,具有高可伸缩、高可靠和易管理等特点。基于 Apache Lucene 构建,能对大容量的数据进行接近实时的存储、搜索和分析操作。通常被用作某些应用的基础搜索引擎,使其具有复杂的搜索功能;
Logstash:数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置;
Kibana:数据分析和可视化平台。通常与 Elasticsearch 配合使用,对其中数据进行搜索、分析和以统计图表的方式展示;
Filebeat:ELK 协议栈的新成员,一个轻量级开源日志文件数据搜集器,基于 Logstash-Forwarder 源代码开发,是对它的替代。在需要采集日志数据的 server 上安装 Filebeat,并指定日志目录或日志文件后,Filebeat 就能读取数据,迅速发送到 Logstash 进行解析,亦或直接发送到 Elasticsearch 进行集中式存储和分析。
ELK 简单架构图:
2. 环境准备服务器环境:Centos 7.0(目前单机,后续再部署集群)
Elasticsearch 和 Logstash 需要 Java 环境,Elasticsearch 推荐的版本为 Java 8,安装教程:确定稳定的 Spring Cloud 相关环境版本
另外,我们需要修改下服务器主机信息:
[root@node1 ~]# vi /etc/hostname node1 [root@node1 ~]# vi /etc/hosts 192.168.0.11 node1 127.0.0.1 node1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 node1 localhost localhost.localdomain localhost6 localhost6.localdomain6