重学数据结构(六、树和二叉树) (7)

AVL树是最先发明的自平衡二叉查找树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它。

AVL树是带平衡条件的二叉查找树:

(1 ) 左子树和右子树的深度之差的绝对值不超过1;

(2) 左子树和右子树也是平衡二叉树。

若将二叉树上结点的平衡因子(Balance Factor, BF)定义为该结点左子树和右子树的深度之
差,则平衡二叉树上所有结点的平衡因子只可能是 -1、0和1。只要二叉树上有一个结点的平衡因子的绝对值大于1 , 则该二叉树就是不平衡的。


图18:平衡的二叉树

在这里插入图片描述


图19:不平衡的二叉树

在这里插入图片描述

在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n。得益于这个特征,它的深度和 log~2~n 是同数量级的(其中n为结点数)。 由此,其查找的时间复杂度是O(log~2~n)。


5.1.2、AVL树的平衡调整方法

插入结点时, 首先按照二叉排序树处理, 若插入结点后破坏了平衡二叉树的特性, 需对平衡二叉树进行调整。 调整方法是:找到离插入结点最近且平衡因子绝对值超过1的祖先结点, 以该结点为根的子树称为最小不平衡子树, 可将重新平衡的范围局限千这棵子树。

在平衡调整的过程中,有一个关键点是旋转

这里有一个具体例子:


图20:平衡树的生成过程

在这里插入图片描述

(1) 空树和1个结点⑬的树显然都是平衡的二叉树。在插入24之后仍是平衡的, 只是根结点的平衡因子BF由0变为-1, 如图18(a) -(c)所示。

(2) 在继续插入37之后, 由千结点 ⑬ 的BF值由 -1 变成 -2, 由此出现了不平衡的现象。此时好比一根扁担出现一头重一头轻的现象, 若能将扁担的支撑点由 ⑬ 改至 ㉔ , 扁担的两头就平衡了。此,可以对树做一个向左逆时针 " 旋转 " 的操作,令结点 ㉔为根,而结点 ⑬ 为它的左子树,此时,结点⑬ 和 ㉔ 的平衡因子都为0, 而且仍保持二叉排序树的特性,如图18(d)~ (e)所示。

(3) 在继续插入90和53之后,结点 ㊲ 的BF值由-1变成-2, 排序树中出现了新的不平衡现象,需进行调整。但此时由于是结点邸插在结点 (90) 的左子树上,因此不能如上做简单调整。离插入结点最近的最小不平衡子树是以结点 ㊲为根的子树。这时,必须以 (53) 作为根结点,而使 ㊲ 成为它的左子树的根,(90) 成为它的右子树的根。这好比对树做了两次 “旋转” 操作,先向右顺时针旋转,后向左逆时针旋转(见图18 (f)~(h)), 使二叉排序树由不平衡转化为平衡。

一般情况下,假设最小不平衡子树的根结点为 A, 则失去平衡后进行调整的规律可归纳为下列4种情况。

(1) LL 型:由于在 A 左子树根结点的左子树上插入结点,A 的平衡因子由 1 增至 2, 致使以A为根的子树失去平衡,则需进行一次向右的顺时针旋转操作,如图21所示。


图21:LL 型调整操作示意图

在这里插入图片描述

图22所示为两个LL型调整的实例。


图22:LL 型调整示例

在这里插入图片描述

(2) RR 型:由千在 A 的右子树根结点的右子树上插入结点, A 的平衡因子由 -1 变为 -2,致使以 A 为根结点的子树失去平衡,则需进行一次向左的逆时针旋转操作,如图23所示。


图23:RR 型调整操作示意图

在这里插入图片描述

图24所示为两个RR型调整的实例。


图24:RR型调整示例

在这里插入图片描述



内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpxzyd.html