【算法】手撕红黑树(上)—— 基本性质以及插入实现(附带代码实现)

在阅读其他博主关于红黑树增删实现的时候,博主们大多直接使用文字图片描述,对整个增删整体的流程突出的不太明显(当然dalao们写得还是很棒得,不然我也写不出这篇文章),所以我特意花了2天时间用CAD制作了 一张插入操作的流程图和一张删除操作的流程图(删除见下篇)并手撕代码(好吧,其实大部分时间在调试代码,毕竟talk is easy,show me the code.)。

废话不多说了,进入正题吧。

红黑树是一种常见而又有点复杂的数据结构,它的应用场景有很多,比如经典的JAVA的HashMap,当slot中元素大于8时就会树化为红黑树。

和AVL树一样,红黑树也是一种二叉搜索树(BST)。但与AVL树不同的是,红黑树通过稍微牺牲其平衡性(即弱化了查找效率),并配合其特殊的规则(下面会说)以实现在增删上的效率提升。即相比AVL树,增删一个节点最多只用旋转三次。【红黑树:没有什么是两次旋转不能解决的,如果有就三次

【算法】手撕红黑树(上)—— 基本性质以及插入实现(附带代码实现)

 

下面介绍以下红黑树的五个规则:

0、树中节点不是红色就是黑色;

1、根节点必为黑色;

2、红色节点的父子不能也是红色(或者说,由根至叶子的每一条路径上不能有连续的红节点);

3、每个叶子节点(NIL节点)是黑色的

4、任意节点到其下方的NIL节点的每一条路径上经过的黑色节点相同(或者说,除去红色节点,黑色节点就是是一个AVL树);

5、在维护红黑树性质之前,对于新插入的节点,我们把它涂红。【这其实只是一个经验,另外,五条规则有六个不是常识么?】

 

接下来我们就用流程图来梳理一下红黑树的插入操作:

但在此之前我们先规定下图中一些代号节点的含义以及旋转的操作:

C节点(Curent,当前要操作节点的指针)

P节点(Parent,当前C节点的父节点)

G节点(Grandparent,当前C节点的爷爷节点)

U节点(Uncle,当前C节点的叔叔节点,即P节点的兄弟节点)   

【注意P、G、U节点应当随着C的更新而更新】

旋转: 以P为支点进行右旋为例——C顶替P的位置,P变为C的有右孩子,C原来的右孩子变为P的左孩子。左旋反向即可。

另外图中白圈节点指代黑节点(毕竟CAD背景色是黑的嘛QAQ),红圈节点就是红节点。

【算法】手撕红黑树(上)—— 基本性质以及插入实现(附带代码实现)

 

最后附上代码(由于增删方法我是一起写的,所以代码中写了删除方法的实现,删除方法的具体流程请参阅下篇):

1 /** 2 * 手撕红黑树 3 * By 469の瘸子 (意义不明的口胡:现在应该是420の的瘸子233) 4 * **/ 5 public class RedBlackTree<E extends Comparable<E> & PrintToDOS> { 6 7 public static final boolean black = true; 8 public static final boolean red = false; 9 public Node root; 10 11 class Node {//节点类 12 public Node parent; 13 public Node left; 14 public Node right; 15 public E element; 16 public boolean color; 17 18 public Node (E element){//构造方法,默认新节点为红色 19 this.element = element; 20 this.color =red; 21 } 22 23 //打印的红黑树的时候,会调用每个节点的打印方法 24 public void print(){ 25 //先打印颜色 26 if (this.color) { 27 System.out.print(" black:"); 28 }else { 29 System.out.print(" red:"); 30 } 31 //再打印值 32 element.print(); 33 //最后打印父节并换行 34 if(parent==null){ 35 System.out.println(" this is root"); 36 }else { 37 System.out.print(" parent is:"); 38 parent.element.println(); 39 } 40 } 41 42 } 43 44 //插入方法,会调用insert方法和fixAfterInsertion方法 45 public void insert(E element){ 46 //case1:树中无元素,直接将elemnt插进去涂黑 47 if (root==null){ 48 root = new Node(element); 49 root.color = black; 50 }else{//case2:树非空,先按二叉搜索树的方式确定元素位置,再视父元素颜色分类处理 51 //先把节点插进去,如果插的元素已经存在会返回null 52 Node node = insertBST(element); 53 //再对树进行维护 54 fixAfterInsertion(node); 55 } 56 57 } 58 59 //该方法只负责将新的节点插进树里,不负责维护红黑树性质 60 private Node insertBST(E element){ 61 Node pointer = root; 62 Node pointer_parent = null; 63 64 do{ 65 switch (element.compareTo(pointer.element)){ 66 case 0: 67 System.out.println("已有当前元素!"); 68 return null; 69 case 1: 70 pointer_parent = pointer; 71 pointer = pointer.right; 72 break; 73 case -1: 74 pointer_parent = pointer; 75 pointer = pointer.left; 76 break; 77 default: 78 break; 79 } 80 }while (pointer!=null); 81 82 Node child = new Node(element); 83 child.parent = pointer_parent; 84 85 //compareTo的结果只会是1或-1。不会出现0,是0的话,在上方的switch语句里就return了 86 if(pointer_parent.element.compareTo(element)>0){ 87 pointer_parent.left = child; 88 }else { 89 pointer_parent.right = child; 90 } 91 return child; 92 } 93 94 //该方法负责插入后的维护工作 95 private void fixAfterInsertion(Node node){ 96 Node cur,parent,grandparent,uncle; 97 cur = node; 98 //检查是否需要维护树,cur是null的话说明插的元素已存在,就不用维护了 99 if(cur !=null){ 100 parent = cur.parent; 101 //cur.print(); 102 //case2.1:父节点为黑色或为空,不用维护 103 if(parent==null||parent.color == black){ 104 return; 105 }else{//case2.2:父节点为红色,视叔叔节点颜色分类处理 106 107 //region 先获取U、G节点的引用(这里G必然非空,因为G空必然P为根且黑,那就不会执行到这里) 108 grandparent = parent.parent; 109 if(grandparent.left == parent){ 110 uncle = grandparent.right; 111 }else { 112 uncle = grandparent.left; 113 } 114 //endregion 115 116 //case2.2.1:U节点为黑色(NIL节点也是黑色的)。视C、P、G节点的形态处理 117 if (uncle==null||uncle.color==black){ 118 //case2.2.1.1:C、P、G形态为“/”、“\”。以G为支点右旋或左旋,P变黑、G变红 119 if(grandparent.element.compareTo(parent.element)==parent.element.compareTo(cur.element)){ 120 parent.color=black; 121 grandparent.color=red; 122 if(grandparent.element.compareTo(parent.element)>0){//“/”形态,右旋 123 rightRotate(grandparent); 124 }else {//“\”形态,左旋 125 leftRotate(grandparent); 126 } 127 }else {//case2.2.1.2:C、P、G形态为“<”、“>”。先以P为支点左旋或右旋,在以P为支点右旋或左旋 128 cur.color = black; 129 grandparent.color =red; 130 if(grandparent.element.compareTo(parent.element)>0){//“<”形态,P左旋后、G右旋 131 leftRotate(parent); 132 rightRotate(grandparent); 133 }else {//“>”形态,P右旋后、G左旋 134 rightRotate(parent); 135 leftRotate(grandparent); 136 } 137 } 138 }else {//case2.2.2:U节点为红色。将P、G、U节点换色,然后cur指向G节点调用维护函数 139 grandparent.color=red; 140 parent.color=black; 141 uncle.color=black; 142 fixAfterInsertion(grandparent); 143 } 144 145 } 146 147 } 148 root.color=black; 149 } 150 151 //左旋方法 152 private void leftRotate(Node node){ 153 Node parent = node.parent; 154 Node child = node.right; 155 Node childLeft = child==null?null:child.left; 156 //子节点上位 157 if(parent==null){//支点为根节点,parent会是空 158 child.parent = null; 159 root = child; 160 }else { 161 if (parent.left == node){ 162 parent.left = child; 163 child.parent = parent; 164 }else { 165 parent.right = child; 166 child.parent = parent; 167 } 168 } 169 //父节点下位 170 child.left = node; 171 node.parent = child; 172 //子树调整 173 node.right = childLeft; 174 if(childLeft!=null){ 175 childLeft.parent = node; 176 } 177 } 178 //右旋方法 179 private void rightRotate(Node node){ 180 Node parent = node.parent; 181 Node child = node.left; 182 Node childRight = child==null?null:child.right; 183 //子节点上位 184 if(parent==null){//支点为根节点,parent会是空 185 child.parent = null; 186 root = child; 187 }else {//支点不是根节点 188 if (parent.left == node){ 189 parent.left = child; 190 child.parent = parent; 191 }else { 192 parent.right = child; 193 child.parent = parent; 194 } 195 } 196 197 //父节点下位 198 child.right = node; 199 node.parent = child; 200 //子树调整 201 node.left = childRight; 202 if(childRight!=null){ 203 childRight.parent = node; 204 } 205 } 206 207 //打印红黑树 208 public void printRBT(Node node){ 209 210 if(node!=null){ 211 printRBT(node.left); 212 node.print(); 213 printRBT(node.right); 214 }else { 215 return; 216 } 217 } 218 219 public static void main(String[] args) { 220 221 //13,8,5,11,6,22,27,25,14,17 另外一组调试数据 222 int[] nums = {1,2,3,4,5,6,7,8,9,10}; 223 RedBlackTree<Element> redBlackTree = new RedBlackTree<Element> (); 224 225 for (int i: nums){ 226 Element element = new Element(i); 227 redBlackTree.insert(element); 228 } 229 //打印红黑树 230 redBlackTree.printRBT(redBlackTree.root); 231 232 //删除操作 233 int value = 3; 234 redBlackTree.remove(new Element(value)); 235 System.out.println("删除节点"+value+"后,打印:"); 236 237 //打印红黑树 238 redBlackTree.printRBT(redBlackTree.root); 239 } 240 241 /**—————————— —— 分割线:以下是删除代码 —————————————**/ 242 //从树中删除一个元素的代码 243 public void remove(E element){ 244 Node pointer = getNodeByElement(element); 245 if(pointer==null){ 246 System.out.print("树中并没有要删除的元素"); 247 return; 248 } 249 do { 250 //case1:要删除的节点仅有一个子树,红黑树性质决定该情况下删除的必然是黑节点,且子节点为红色叶子节点 251 if ((pointer.left==null)!=(pointer.right==null)) { 252 //要删除的节点的子树(仅为一个红色叶子节点)顶上来并变色 253 removeOneBranchNode(pointer); 254 return; 255 } else {//case2:删除节点为叶子节点 256 if ((pointer.left == null)&&(pointer.right == null)) { 257 removeLeafNode(pointer); 258 return; 259 } else {//case3:要删除的节点有两个子树 260 //指针指向后继节点,后继节点element顶替要删除的element。再do一次以判定新指针的case(此时只会是case2、3) 261 pointer = changePointer(pointer); 262 } 263 } 264 265 }while (true); 266 } 267 268 //获取要删除的元素的Node,若返回为null代表树中没有要删除的元素 269 public Node getNodeByElement(E element){ 270 if(root==null){//树为空,返回null 271 return null; 272 } 273 274 Node pointer = root; 275 do{ 276 if(element.compareTo(pointer.element)>0){//大于,指针指向右孩子 277 pointer = pointer.right; 278 }else { 279 if(element.compareTo(pointer.element)<0){//小于,指针指向左孩子 280 pointer = pointer.left; 281 }else {//等于,返回当前的节点 282 return pointer; 283 } 284 } 285 }while (pointer!=null); 286 return null; 287 } 288 289 //指针指向后继节点,并用后继节点的element顶替要删除的element,没有后继节点就返回null 290 public Node changePointer(Node pointer){ 291 //指针备份方便替换时找到引用 292 Node pointer_old = pointer; 293 //寻找后继节点 294 pointer = pointer.right; 295 while (pointer.left!=null){ pointer = pointer.left; } 296 pointer_old.element=pointer.element; 297 return pointer; 298 } 299 300 //删除叶子节点,红色的就直接删,黑色的分情况处理 301 public void removeLeafNode(Node pointer){ 302 Node parent = pointer.parent; 303 Node pointer_old = pointer; 304 //case:2.1叶子节点是根节点 305 if(parent==null){ 306 root=null; 307 return; 308 } 309 //case:2.2叶子节点是红色的的话直接删除,黑色的要分类处理 310 if(pointer.color==red){ 311 if(pointer.parent.left==pointer){ 312 pointer.parent.left=null; 313 }else { 314 pointer.parent.right=null; 315 } 316 }else { 317 //case2.3:叶子节点是黑色的,视兄弟点分类处理 318 while (pointer.parent!=null&&pointer.color==black){ 319 parent = pointer.parent;//在case2.3.2.2下循环,要更新parent 320 Node brother; 321 if(pointer.parent.left==pointer){//左叶子节点处理方式 322 brother = pointer.parent.right; 323 //case2.3.1:兄弟节点为红色。那么将其转换为黑色 324 if(brother.color==red){ 325 brother.color = black; 326 parent.color = red; 327 leftRotate(parent); 328 brother = parent.right; 329 } 330 //case2.3.2:兄弟节点为黑色,侄子节点都是黑色(NIL) 331 if((brother.left == null)&&(brother.right == null)){ 332 //case2.3.2.1:父节点为红色 333 if(parent.color==red){ 334 parent.color = black; 335 brother.color = red; 336 break; 337 }else {//case2.3.2.2:父节点为黑色 338 brother.color = red; 339 pointer = parent; 340 //继续循环 341 } 342 }else { 343 //case2.3.3:兄弟节点为黑色,左侄子为红色 344 if((brother.color==black)&&brother.left!=null&&brother.left.color==red){ 345 brother.left.color = parent.color; 346 parent.color = black; 347 rightRotate(brother); 348 leftRotate(parent); 349 //case2.3.4:兄弟节点为黑色,右侄子为红色 350 }else if((brother.color==black)&&brother.right!=null&&brother.right.color==red){ 351 brother.color = parent.color; 352 parent.color = black; 353 brother.right.color = black; 354 leftRotate(parent); 355 } 356 break; 357 } 358 }else {//右叶子节点处理方式 359 brother = pointer.parent.left; 360 //case2.3.1:兄弟节点为红色。那么将其转换为黑色 361 if(brother.color==red){ 362 brother.color = black; 363 parent.color = red; 364 rightRotate(parent); 365 brother = parent.left; 366 } 367 //case2.3.2:兄弟节点为黑色,侄子节点都是黑色(NIL) 368 if((brother.left == null)&&(brother.right == null)){ 369 //case2.3.2.1:父节点为红色 370 if(parent.color==red){ 371 parent.color = black; 372 brother.color = red; 373 break; 374 }else {//case2.3.2.2:父节点为黑色 375 brother.color = red; 376 pointer = parent; 377 //继续循环 378 } 379 380 }else { 381 //case2.3.3:兄弟节点为黑色,右侄子为红色 382 if((brother.color==black)&&brother.right!=null&&brother.right.color==red){ 383 brother.right.color = parent.color; 384 parent.color = black; 385 leftRotate(brother); 386 rightRotate(parent); 387 //case2.3.4:兄弟节点为黑色,左侄子为红色 388 }else if((brother.color==black)&&brother.left!=null&&brother.left.color==red){ 389 brother.color = parent.color; 390 parent.color = black; 391 brother.left.color = black; 392 rightRotate(parent); 393 } 394 break; 395 } 396 } 397 } 398 //最后别忘了删掉这个节点 399 if(pointer_old.parent.left == pointer_old){ 400 pointer_old.parent.left = null; 401 }else if((pointer_old.parent.right == pointer_old)){ 402 pointer_old.parent.right = null; 403 } 404 pointer_old.parent = null; 405 406 } 407 } 408 409 //删除单分支节点(此时删除节点必为红色,子树仅为一个叶子节点)。子树(就是一个叶子节点)顶上来涂黑即可。 410 public void removeOneBranchNode(Node pointer){ 411 Node child = pointer.left!=null?pointer.left:pointer.right; 412 if(pointer.parent.left==pointer){ 413 pointer.parent.left = child; 414 }else { 415 pointer.parent.right = child; 416 } 417 child.parent = pointer.parent; 418 child.color=black; 419 } 420 421 422 423 }

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpydss.html