分布式主动感知在智能运维中的实践 (3)

底层是所有数据的来源,我们把大量数据收集起来,通过实时分析交付到算法平台。算法平台包括三部分,首先是基于规则和模式进行简单的分类,然后通过域算法,最后通过机器学习和AI的方式影响Operation,让自动化运行起来。

如果大家了解AI,就会发现这其实就是一个AI智能体,包括从Sensing到Thinking到Acting,即感知到思考到执行的过程。

三、宜信智能运维实践 3.1 宜信IT运营架构

宜信正在落地“中台化战略”,将可复用的技术集中到技术中台、数据/智能中台、运维中台,统一提供服务,节约了人力和资源,提高需求响应速度。

分布式主动感知在智能运维中的实践

图7

宜信的IT运营架构分为四部分:

居于中心的是技术中台,真正承载业务。技术中台沿用了云平台的概念,从底层的物理环境开始,包括IaaS、PaaS、SaaS,这里的SaaS实际上是一种中台的概念,将通用性的系统软件沉淀到中台上,统一为业务系统提供服务。

数据/智能中台,为其他业务和平台提供统一的可复用的数据和智能服务。

运维中台,积极响应研发、业务发起的请求,维护线上业务系统。运维方面采用传统运营的方式和互联网快速迭代共同交互的方式,在监控、信息、自动化等垂直领域建立所有套件。

运维如何使用数据/智能中台的数据和应用呢?我们建立一个通用的管道,把运维产生的有价值的数据传输到数据/智能中台,数据/智能中台通过对这些数据进行分析,并基于运维需要的场景反馈智能应用。

3.2 运维管理

分布式主动感知在智能运维中的实践

图8

上图所示是运维管理架构。

从左到右是从运营到运维,也可以说是从运营到DevOps,左边更偏向于ITSM的概念,右边更偏向于DevOps的概念。从上到下是从入口到执行。 大家可能更熟悉DevOps,以这部分为例介绍上图所示架构。

我们的建设方式是从自服务入口,它被对接到持续集成和持续发布平台,持续集成和持续发布平台会利用所有的自动化建设,包括主机、域名、数据库、负载均衡及其他组件,实现自动化,最终我们会把线上的系统数据收集起来,包括指标、跟踪、日志等,这就是监控的部分。

上述DevOps部分的运维管理架构对于交付2C产品是非常适合的,但对于像宜信这样,有大量系统是面向内部人员的,要求能够快速响应用户的问题,并且能快速沉淀更有价值的运维请求和数据,单一的运维管理架构不足以满足上述要求。

因此我们也会建设ITSM部分,即偏运营、偏管理、偏审核的部分。ITSM部分以服务台为入口,涉及的内部管理包括请求管理、事件管理、问题管理、变更管理、需求管理和编排管理等,涉及的信息管理包括资产管理和CMDB。 下面我们通过一个实例来看ITSM的价值点。

系统出现一个故障:业务人员在提交一个用户的手机号时报错,提示系统出现故障请联系开发人员。如果是在DevOps领域处理这个问题就很简单,把故障报给研发,研发就给解决了。但这样处理,下次可能还会出现同样的问题。

如果将故障放到ITSM部分进行分析,就能让问题得到更根本的解决。发现故障后,通过请求管理把这件事告诉后台人员,后台人员看到请求后将故障升级为“事件”并提交给研发人员,研发人员分析得知引发故障的原因是手机号触发了风险控制平台,而风险控制平台由于刚刚上线所以状态码的解释并不充分,研发人员将平台关闭,故障处理完成,同时将该“事件”升级成“问题”。研发和产品人员对该问题分析后认为需要变更相关服务,提供更细的状态码和更清晰的错误提示,于是将“问题”提交成“需求”。最终“需求”完成,“问题”解决,之后类似的情况也不会再发生。

3.3 采集和处理

前文提到运维中台和数据/智能中台之间有一个通用管道,运维中台负责采集所有数据,进行简单加工,并传输给数据/智能中台,智能中台分析处理数据并反馈数据及智能应用给运维中台。

分布式主动感知在智能运维中的实践

图9

上图所示为数据采集和处理的架构。

采集的数据形式包括动态和静态两种:动态数据包括业务、应用、链路、技术设施、全网、日志数据等;静态数据包括配置、拓扑、工单数据等。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpygjz.html